

RESEARCH MEMORANDUM

ALTITUDE COMPONENT PERFORMANCE OF THE YJ73-GE-3

TURBOJET ENGINE

John E. McAulay and Carl E. Campbell

Lewis Flight Propulsion Laboratory Cleveland, Ohio

LIBRARY COPY

JAN 12 1955

LANGLEY AERONAUTICAL LABORATORY LIBRARY, NAGA LANGLEY FIELD, VIRGINIA

material contains information affecting the National Datense of the United States within the meaning applorage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON January 10, 1955

UNCLASSIFIED

CLASSIFICATION CHANGEL

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ALTITUDE COMPONENT PERFORMANCE OF THE YJ73-GE-3 TURBOJET ENGINE

By John E. McAulay and Carl E. Campbell

SUMMARY

An investigation to determine the altitude performance characteristics of the YJ73-GE-3 turbojet engine was conducted in an altitude chamber of the NACA Lewis laboratory. The engine was equipped with variable inlet guide vanes. The component performance was determined at two positions of the inlet guide vanes over a range of engine speeds, exhaust-nozzle areas, and flight conditions. The range of flight conditions covered corresponds to a variation in compressor Reynolds number index from 0.96 to 0.12.

A reduction in Reynolds number index over approximately the range indicated resulted in a decrease in the corrected air flow of $4\frac{1}{2}$ percent and in compressor efficiency of 6 percent. By operating the engine with the inlet guide vanes closed, the compressor steady-state performance was improved at corrected engine speeds below 6300 rpm. For example, at a corrected engine speed of 5600 rpm, the compressor efficiency was raised from 0.73 to 0.82 as the inlet guide vanes were moved from the open to the closed position. At rated engine conditions at a flight Mach number of 0.8, the combustion efficiency varied from 0.98 to 0.96 as altitude was varied from sea level to 55,000 feet. Within the range of this investigation, turbine efficiency varied about 4 percent. About half this variation is due to the effect of turbine-inlet Reynolds number, while the remaining half is due to changes in the turbine operating point.

INTRODUCTION

An investigation to determine the altitude performance and operational characteristics of the YJ73-GE-3 turbojet engine was conducted in an altitude chamber of the NACA Lewis laboratory. As part of this investigation, the performance of the components operating in the engine was obtained and is presented herein. The engine discussed herein is the production version of the J73 and is

3167

CV-1

equipped with variable inlet guide vanes to avoid compressor surge during acceleration at low engine speed. The component performance is shown for operating conditions that occur over a range of engine speeds at four fixed exhaust-nozzle areas with the inlet guide vanes in both the open and closed positions. Simulated flight conditions varied from altitudes of approximately sea level to 55,000 feet and flight Mach numbers from zero to 1.2 (corresponding to a Reynolds number index range from 0.96 to 0.12). All data were taken with the inlet screens retracted.

APPARATUS

Installation and Instrumentation

The altitude-chamber test section in which the engine was installed is 14 feet in diameter and 20 feet long (fig. 1). A photograph of the engine installed in the test chamber is shown in figure 2. The platform on which the engine was rigidly mounted is connected by a linkage to a balance-pressure diaphragm for measuring engine thrust. A honeycomb is installed in the chamber upstream of the test section to straighten and smooth the flow of the inlet air. The front bulkhead, which incorporates a labyrinth seal around the forward end of the engine, prevents the flow of combustion air directly into the engine compartment and exhaust system and provides a means of maintaining a pressure difference across the engine. A bellmouth cowl was installed on the front bulkhead just ahead of the engine to obtain a smooth flow of air into the compressor.

Air supplied to the inlet section of the altitude chamber can be either heated or refrigerated. Exhaust gases from the jet nozzle pass through an exhaust section, a primary cooler, an exhaust header, and a secondary cooler before entering the exhauster system. The inlet and exhaust pressure controls were designed to automatically maintain constant the desired ram pressure ratio and exhaust pressure.

The location of the instrumentation stations throughout the engine is shown in the cross-sectional sketch of figure 3. Also shown on this figure is a table giving the number of pressure tubes, wall static orifices, and thermocouples at each station. All pressures were measured by means of alkazene or mercury manometers and were photographically recorded. Temperatures were measured with iron-constantan and chromel-alumel thermocouples and were recorded by self-balancing potentiometers. Engine speed was measured by a chronometric tachometer and fuel flow by means of a calibrated rotameter.

Engine

At static sea-level conditions the YJ73-GE-3 turbojet engine has the following ratings:

	Military	Normal
Engine speed, rpm	7950	7615
Exhaust-gas temperature, OF	1185	1085
Thrust, 1b (screens retracted)	8920	7840
Specific fuel consumption, lb/(hr)(lb thrust)	0.917	0.887

Compressor-outlet leakage and bleed air are used to provide a balance piston force at the front of the compressor and to cool the turbine disks and the first-stage turbine stator. This air is eventually returned to the main air stream before it passes through the exhaust nozzle.

The standard fixed-area conical exhaust nozzle has a nominal diameter of 21 inches. This nozzle was sized to give limiting exhaust-gas temperature at rated engine speed at static sea-level conditions. In addition, three larger exhaust nozzles were also installed on the engine during the program. The largest exhaust nozzle used had an exit area slightly larger than the turbine-outlet area.

Compressor

The 12-stage axial-flow compressor is shown in figure 4(a). The 21 variable inlet guide vanes rotate simultaneously through an angle of 30° from the open to the closed position. In the open position, the angles between the engine center line and a line tangent to the leading and trailing edges of the guide-vane airfoil sections at the root and the tip are 0° and 13°, respectively. The inlet guide vanes change position at an engine speed of 6800 rpm, going from the closed to the open position as speed is increased. The rate at which this change is made is independent of engine characteristics.

The significant compressor design parameters are:

Blade-tip diam Rotor hub-tip	10t	ter the	: (CC	na	ste	nt,	, (د	, 1	ln.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32 <u>1</u>
First stage	•	•	•	•	•	•	٠.									•		•		•	•				•	0.46
Tast stage		_	_																							0.88

Air flow, lb/sec													¹ 143
Air flow per sq ft of frontal area	•	•.	•	•	•	•	•	•	٠٠,.	•	•	•	. 25.4
Compressor efficiency													
Compressor-inlet tip Mach number													0.997

Combustor

The combustor used in this engine is of the cannular type, consisting of an annular space containing 10 can-type liners (fig. 4(b)) that are connected to the turbine-inlet annulus by transition sections. Two spark-plug-type ignitors, located in liners diametrically opposite, are employed for engine starting. Large elliptical cross-over tubes between liners are used to facilitate flame propagation during highaltitude starting. Fuel is supplied to a dual-element fuel nozzle in each combustor primary zone. A fuel-flow divider ahead of the fuel nozzles determines the division of the fuel to the small and large orifices of each fuel nozzle.

The maximum combustor flow area, which is an annular area, is 5.3 square feet and results at rated conditions in an average reference velocity of about 95 feet per second in the combustor primary zone.

Turbine

The two-stage axial-flow turbine rotor is shown in figure 4(c). The significant turbine design parameters are:

Blade-tip diameter, in.	1
First stage	29=
	_
Second stage	31층
Hub-tip radius ratio	J
First stage	0.73
Second stage	0.64
Average radial tip clearance, in	0.05
Rated turbine-inlet temperature, OR	2020
Rated corrected turbine speed, rpm	4040
Design corrected work, Btu/lb	28.5
	42

From manufacturer's compressor-rig tests.

3167

3167

The first-stage turbine stator contains internal passages through which cooling air from the compressor leakage is passed. The second-

5

stage turbine stator blades increase in height from leading to trailing edge by an amount corresponding to the previously mentioned change in turbine tip diameter between the two stages.

PROCEDURE

A temporary limitation in the refrigeration system occurred during the period of this investigation when most of the data were obtained, and thus the inlet-air temperatures were confined to a range between 60° and -20° F. Limited data were taken later when it became possible to obtain inlet temperatures of -80° F and below. The preponderance of the data (given in table I) were obtained in the earlier period, and the later data (table II) were undertaken only to extend the data to higher values of corrected engine speed.

The following table indicates the range over which the earlier data were obtained with four different exhaust nozzles:

Nominal pressure altitude, ft	Nominal flight Mach number, MO	Average Reynolds number index	Nominal engine- speed range, rpm	Inlet- guide-vane position
Sea-level	0	0.96 .96	5500-7950 3600-7950	Open Closed
15,000	0.8	0.88	5500-7950	Open
25,000	0.8	0.59	5500-7950	Open
35,000	1.2 .8 .8	0.58 .39 .40	5500-7950 5500-7950 4500-7950	Open Open Closed
45,000	0.8	0.24	5500-7950	Open
55,000	0.8	0.15 .12	5500-7950 5500- 7 950	Open Open

The later data were taken only at altitudes of 35,000 feet and above with the inlet guide vanes open. Although the flight conditions of these data correspond to the data listed above, the Reynolds number indices differ, inasmuch as these data were taken at a considerably lower inlet-air temperature.

The fuel used throughout the investigation was MIL-F-5624A, grade JP-4, with a lower heating value of 18,700 Btu per pound and a hydrogen-carbon ratio of 0.168. The symbols and methods of calculation used in this report are given in appendixes A and B, respectively.

RESULTS AND DISCUSSION

The performance is presented herein for each component over a range of operating conditions as an independent component and also as a component operating in the engine. The data in this report are presented for various values of Reynolds number index, not altitude and Mach number. In order to correlate these data with flight conditions, the variation of Reynolds number index with altitude and flight Mach number for standard NACA conditions is shown in figure 5.

Compressor Performance

Performance maps. - The compressor performance is presented by showing lines of constant corrected engine speed (compressor Mach number) and compressor efficiency on coordinates of compressor pressure ratio and corrected air flow. Performance maps with the inlet guide vanes in the closed position are presented in figures 6(a) and (b) at the two Reynolds number indices for which complete data were obtained, namely, 0.96 and 0.40. Within the accuracy of the data, a given corrected engine speed resulted in only one compressor pressure ratio for corrected engine speeds of 6000 rpm or lower. The peak compressor efficiency occurred at a corrected engine speed of 6000 rpm and decreased from 0.82 to 0.79 as Reynolds number index decreased from 0.96 to 0.40. This same change in Reynolds number index had little or no effect on corrected air flow.

With the inlet guide vanes in the open position, data were taken over a sufficient range of Reynolds number indices to define clearly the Reynolds number effect. Performance is presented in the compressor map (fig. 6(c)) at Reynolds number index of 0.39 and in figure 7, which shows the variation of corrected air flow and compressor efficiency with Reynolds number index for constant values of corrected engine speed and compressor pressure ratio. Data at Reynolds number index of 0.39 were selected for figure 6(c) because of the high corrected engine speed data that were available. A peak compressor efficiency of slightly over 0.84 occurred at a corrected engine speed of about 7100 rpm and a compressor pressure ratio of 5.5. At rated corrected engine speed, the compressor efficiency decreased to 0.81 and the corrected air flow was about 141 pounds per second. Within the range of exhaust-nozzle areas used to obtain the data, variation in compressor pressure ratio at a given corrected engine speed resulted in small changes in compressor efficiency of the order of 0.02 or less. At corrected engine speeds above 7000 rpm, variations in pressure ratio had little effect on corrected air flow; while at speeds below 7000 rpm, the corrected air flow increased as pressure ratio was reduced.

Effect of Reynolds number. - The effects of Reynolds number on compressor efficiency and corrected air flow are presented in figure 7. A careful examination of the data obtained at Reynolds number indices other than 0.39 has shown these curves to be valid for open-inlet-guide-vane operation at all compressor pressure ratios at corrected engine speeds of 6800 rpm and above. For a given corrected engine speed and compressor pressure ratio, the ordinates of figure 7 give the ratio of the compressor efficiency and corrected air flow at any Reynolds number index to the compressor efficiency and corrected air flow at a Reynolds number index of 0.39. Thus, the corrected air flow and compressor efficiency can be obtained for a Reynolds number index of 0.39 (fig. 6(c)) and corrected to any desired Reynolds number index (fig. 7) within the range investigated.

The effects of Reynolds number as shown in figure 7 are to reduce the compressor efficiency about 6 percent and the corrected air flow about $4\frac{1}{2}$ percent as Reynolds number index is decreased from 0.96 to 0.12. The decreases in compressor efficiency and corrected air flow with Reynolds number index are small until Reynolds number index is reduced below 0.5.

Comparison of compressor performance with inlet guide vanes in open and closed positions. - A comparison of the performance with open and closed inlet guide vanes is presented in figure 8 at a Reynolds number index of 0.96. In this figure, compressor pressure ratio, efficiency, and corrected air flow for the rated exhaust-nozzle area are shown as functions of corrected engine speed. Also shown are the pressure-ratio stall lines for the two inlet-guide-vane positions. The range of corrected engine speeds over which the inlet guide vanes will change position is also indicated. It can readily be seen that, at low corrected engine speeds (below 6300 rpm), an improvement in the steady-state compressor performance may be obtained by operating with the inlet guide vanes in the closed position; at corrected engine speeds above 6300 rpm, the opposite is true. At a corrected engine speed of 5600 rpm, for example, changing the inlet guide vanes from the open to the closed position resulted in no change in pressure ratio, an increase in corrected air flow from 70 to 72 pounds per second, and an increase in compressor efficiency from 0.73 to 0.82. The surge lines indicate about the same margin of acceleration (in terms of pressure ratio) for either guide-vane position. Consideration of the steady-state performance and surge lines would indicate that, in general, a lower switch-over speed than that provided would be advantageous. Engine acceleration characteristics, which are beyond the scope of this report, are not completely determined by the variables shown in figure 8, however. No final selection of switch-over point should be made, therefore, without consideration of acceleration characteristics.

Performance maps for compressor operating as part of engine. - In order to identify the compressor performance with engine operating conditions, lines of constant corrected turbine-inlet temperature are superimposed in figure 9 on the compressor maps obtained at Reynolds number indices of 0.96 and 0.12, the limits over which the investigation was conducted. Also superimposed on each map is a line showing the mode of operation with rated exhaust-nozzle area.

At a Reynolds number index of 0.96 (fig. 9(a)), with the engine operated at rated corrected engine speed and exhaust-nozzle area, the compressor pressure ratio was 7.0, the corrected air flow 143 pounds per second, the compressor efficiency 0.82, and the corrected turbine-inlet temperature 2020 R. As Reynolds number index was reduced to 0.12 (fig. 9(b)), at the same corrected engine speed and exhaust-nozzle area, the compressor pressure ratio remained at 7.0. the corrected air flow and compressor efficiency decreased to 136 pounds per second and 0.78, respectively, and the corrected turbineinlet temperature was raised to 2180° R. As noted previously, the reductions in corrected air flow and compressor efficiency are due to Reynolds number effects on the compressor. A similar effect on the turbine performance will be shown in a later section. These Reynolds number effects were of such magnitude and direction that a constant compressor pressure ratio and an increased corrected turbineinlet temperature resulted.

For both Reynolds number indices, the operating line for rated exhaust-nozzle area passed through the region of maximum compressor efficiency.

Pressure loss through the compressor-outlet diffuser. - The loss in total pressure in the diffuser between the compressor and combustor may be expressed in terms of total-pressure loss ratio (pressure loss divided by inlet pressure). Over the entire range of this investigation this total-pressure loss ratio was about 0.6 percent.

Combustor Performance

Combustion efficiency. - As shown in reference 1, combustion efficiency for several combustors correlates with combustor-inlet conditions P_4T_3/V_b . Combustion efficiency is presented as a function of P_4T_3/V_b in figure 10. Over the range that the combustor operated in this engine, the fuel distribution and fuel-air ratio were found to have negligible effect on this correlation. An auxiliary scale of $W_{a,1}T_7$, which is proportional to P_4T_3/V_b , is also shown, because it is considered a more practical parameter insofar as engine operation

3167

. .

.-

--

• ..

is concerned. The combustion efficiency was constant at 0.98 above P_4T_3/V_b of 35,000 ($W_{8,1}T_7$ of 52,500). A decrease in combustion parameter below this value resulted in a decrease in combustion efficiency to 0.83 at P_4T_3/V_b of 6000. Thus, at rated engine conditions and a flight Mach number of 0.8, the combustion efficiency remained at 0.98 up to an altitude of about 37,000 feet (P_4T_3/V_b of 35,000) and decreased to 0.96 at an altitude of 55,000 feet (P_4T_3/V_b of 23,000).

Combustor total-pressure loss. - The combustor total-pressure loss ratio is presented as a function of combustor temperature ratio in figure 11. Data for all Reynolds number indices fall along a single curve. The pressure loss ratio decreased from 0.075 to 0.037 as combustor temperature ratio increased from 1.0 to 2.2 (approximately the combustor temperature ratio at rated conditions).

Combustor-outlet temperature distribution. - The data presented in figure 12 are typical temperature profiles at the turbine outlet. Previous investigations have indicated that turbine-outlet profiles reflect the combustor-outlet profiles, although in somewhat diminished magnitude. The turbine-outlet station is used, because no reliable temperature measurements were available at the combustor cutlet. There were no consistent effects of altitude, flight Mach number, engine speed, or temperature level on the combustor temperature distribution. The data of figure 12 indicate that the radial temperature distribution with which the rotor would be concerned is relatively flat. However, the circumferential temperature variations are of considerable magnitude, amounting to 12 percent above the average (probably more ahead of the turbine). Therefore, near rated temperatures the local temperature may be more than 2000 F above the average. Although this circumferential unbalance is unimportant insofar as the rotor is concerned, it could be detrimental to the stator life. No adverse effects on stator life were observed during the testing reported herein, which included over 170 hours of engine operation at various conditions without engine overhaul.

Turbine Performance

Performance map. The performance of the turbine is presented in terms of corrected enthalpy drop and turbine gas-flow parameter with lines of constant corrected turbine speed, turbine pressure ratio, and turbine efficiency. Data for compressor Reynolds number indices of 0.96 and 0.88 were combined to construct the map shown in figure 13. For these compressor Reynolds number indices, the turbine Reynolds number index varied nominally from 0.90 to 1.50. A check showed that

3167

turbine Reynolds number had a negligible effect over this range of turbine Reynolds number indices. Therefore, the map of figure 13 was constructed from all data that fell within this turbine Reynolds number index range. Because of the variable inlet guide vanes used on this engine, it was possible to obtain turbine performance over a much wider range of enthalpy drop (at a constant corrected turbine speed) than is usually possible in engine performance evaluations.

At rated static sea-level conditions, the turbine operated at a corrected turbine speed of 4040 rpm and a corrected enthalpy drop of 30.0 Btu per pound. This operating point on the map of figure 13 (which approximates the static sea-level condition) corresponded to a turbine pressure ratio of 2.96, a corrected turbine gas flow of 43.0 pounds per second, and a turbine efficiency of 0.87. From the turbine weight-flow parameter, it may be determined that increasing the corrected turbine speed from 3900 to 4600 rpm resulted in about a $2\frac{1}{2}$ -percent reduction in the corrected turbine gas flow. Thus, the critical turbine flow area decreased as corrected turbine speed was increased, which indicated that the critical turbine flow area was downstream of the first-stage stator.

The peak turbine efficiency, which was slightly over 0.87 for the data shown in figure 13, occurred at a corrected turbine speed of about 4150 rpm. Over the entire range of turbine operation in figure 13, the efficiency varied less than 0.02. At any given corrected turbine speed, changing the turbine pressure ratio had no discernible effect on corrected gas flow or efficiency within the range investigated.

Effect of Reynolds number. - The effect of turbine Reynolds number on turbine efficiency and corrected turbine gas flow at a given corrected turbine speed and pressure ratio is presented in figure 14. The reference Reynolds number index of 1.50 was used so that figures 13 and 14 could be used together in determining turbine performance. The trends shown in figure 14 are valid over the range of turbine operating conditions presented in figure 13. The effect of reducing the turbine Reynolds number from 1.50 to 0.15 was to decrease the corrected turbine gas flow 2 percent and the turbine efficiency $2\frac{1}{2}$ percent.

Altitude Performance of Components at Rated Conditions

The variation of component performance with altitude at a flight Mach number of 0.8 is presented in figure 15 for rated engine conditions (rated exhaust-nozzle area and either limiting engine speed or exhaust-gas temperature). Increasing altitude from sea level to 55,000 feet

3167

results in an increase in corrected engine speed from 7480 to 8610 rpm and a decrease in Reynolds number from 1.31 to 0.17. The corrected engine speed of 8610 rpm is reached at the tropopause and remains constant as altitude is raised above this value. Compressor efficiency decreased from 0.842 to 0.768 as altitude was increased from sea level to the tropopause. Practically all of this decrease resulted from the increased corrected engine speed, while the effect of Reynolds number up to the tropopause was negligible. As altitude was increased to 55,000 feet, a further reduction of compressor efficiency to 0.753 occurred entirely because of Reynolds number effects. As can be seen in figure 15, the reduction in compressor efficiency would have been greater (to 0.744), except that it was necessary to reduce the engine speed in order to maintain turbine temperature limits.

The corrected air flow increased from 134.9 to 146.7 pounds per second as altitude was raised to the tropopause (assuming that corrected air flow is constant above a Reynolds number index of 0.96, i.e., fig. 7). This increase is due to the increase in corrected engine speed, which overshadowed the relatively small decrease associated with Reynolds number. As altitude was increased beyond the tropopause to an altitude of 55,000 feet, the corrected air flow was reduced to 142.9 pounds per second because of the effect of Reynolds number and the previously mentioned reduction in engine speed.

An increase in the altitude from sea level to 55,000 feet resulted in a small decrease in combustion efficiency from 0.98 to 0.96. This reduction, of course, would increase if lower values of flight Mach number or engine speed were considered, inasmuch as combustion efficiency is primarily a function of the combustor pressure level.

Turbine efficiency decreased from about 0.870 to 0.854 as altitude was raised from sea level to 55,000 feet. Over the range through which the turbine operates in the engine, turbine efficiency is a function only of corrected turbine speed and turbine Reynolds number (figs. 13 and 14). Because the corrected turbine speed remained nearly constant for rated engine conditions, the decrease in turbine efficiency resulted only from a decrease in turbine Reynolds number.

CONCLUDING REMARKS

Performance of the components of the YJ73-GE-3 engine was determined over a wide range of engine operating conditions and flight conditions. The effect of Reynolds number on the compressor performance at a constant corrected engine speed and compressor pressure ratio with the inlet guide vanes open was to reduce the corrected air flow $4\frac{1}{2}$ percent

and the compressor efficiency 6 percent as Reynolds number index decreased from 0.96 to 0.12. At corrected engine speeds below 6300 rpm, the compressor performance can be improved by operating with the inlet guide vanes in the closed position. At a corrected engine speed of 5600 rpm, the compressor efficiency is raised from 0.73 to 0.82 as the inlet guide vanes move from the open to the closed position.

At rated engine conditions at a flight Mach number of 0.8, as altitude was increased from sea level to 55,000 feet, the compressor efficiency was reduced about 11 percent and the corrected air flow was raised about 6 percent primarily because of the effects of increased corrected engine speed.

The combustion efficiency remained at 0.98 at values of P_4T_3/V_b of 35,000 and above, which corresponds to rated engine conditions at an altitude of 37,000 feet or less and a flight Mach number of 0.8. At the same engine and flight conditions at an altitude of 55,000 feet, the combustion efficiency was 0.96. At all Reynolds number indices the combustor total-pressure loss ratio was 0.037 for rated engine conditions.

Over the range of engine conditions investigated, at any given compressor Reynolds number index the turbine efficiency and the corrected turbine gas flow varied about 2 percent. As the turbine-inlet Reynolds number index was decreased from 1.50 to 0.15 at constant corrected turbine speed and turbine pressure ratio, the corrected turbine gas flow and the turbine efficiency decreased 2 and $2\frac{1}{2}$ percent, respectively. At rated engine conditions, as altitude was increased from sea level to 55,000 feet at 0.8 flight Mach number, a reduction in turbine efficiency of 2 percent was due only to the decrease in turbine Reynolds number.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, April 16, 1954

APPENDIX A

SYMBOLS

The following symbols are used in this report:

- A cross-sectional area, sq ft
- g acceleration due to gravity, 32.174 ft/sec2
- H total enthalpy of air or gas mixture, Btu/lb
- M Mach number
- N engine speed, rpm
- P total pressure, lb/sq ft abs
- p static pressure, lb/sq ft abs
- R gas constant, 53.4 ft-lb/(lb)(OR)
- Re Reynolds number
- T total temperature, OR
- V velocity, ft/sec
- V_{cr} critical velocity, $\sqrt{\frac{2\gamma}{\gamma+1}} \, gRT$, ft/sec
- Wa air flow, lb/sec
- Wr fuel flow, lb/hr
- Wg gas flow, lb/sec
- β function of γ , $\frac{1.4}{\gamma} \left[\frac{\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma}{\gamma-1}}}{\left(\frac{1.4+1}{2}\right)^{\frac{1.4}{1.4-1}}} \right]$
- γ ratio of specific heats

7

δ	pressure-correction factor P/2116 (total pressure divided by NACA standard sea-level pressure)		•
η	efficiency		
Θ	temperature-correction factor $(V_{\rm cr}/1018)^2$ (squared ratio of critical velocity to critical velocity at NACA standard sealevel conditions)		
λ	$\frac{Am + B}{m + 1}$, $\frac{Btu}{lb \text{ of fuel}}$ (as defined in ref. 2)		3167
μ	absolute viscosity, lb-sec/sq ft		
ρ	density, lb-sec ² /ft ⁴		
ф	viscosity-correction factor $\mu/3.719\times10^{-7}$ (viscosity divided by NACA standard sea-level viscosity)		
Subsc	ripts:		•
a.	air		_
đ	combustor		
С	compressor		
g	gas mixture		
i	indicated	-	
t	turbine		
0	free-stream conditions		
1	engine or compressor inlet		
3	compressor outlet, compressor diffuser inlet		
1	combustor inlet, compressor diffuser outlet		
5	turbine inlet, combustor outlet		
3	turbine outlet, tail-pipe diffuser inlet		

exhaust-nozzle inlet, tail-pipe diffuser outlet

APPENDIX B

METHODS OF CALCULATION

Temperature. - Total temperatures were calculated from indicated temperatures by the following relation:

$$T = \frac{T_1\left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}}}{1 + 0.85 \cdot \left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}}}$$
 (1)

where 0.85 is the impact recovery factor for the type of thermocouple used.

Reynolds number index. - For a given corrected engine or turbine speed, Reynolds number index varies linearly with Reynolds number and is defined as the ratio of Reynolds number at any condition to Reynolds number at standard sea-level conditions:

Re index =
$$\frac{\delta}{\phi \sqrt{\theta}}$$
 (2)

Air flow. - Air flow was determined from pressure and temperature measurements at the engine inlet (station 1) by the following equation:

$$W_{a,1} = g\rho_1 A_1 V_1 = p_1 A_1 \sqrt{\left(\frac{2\gamma_1}{\gamma_1 - 1}\right)\left(\frac{g}{RT_1}\right)\left(\frac{p_1}{p_1}\right)^{\frac{\gamma_1 - 1}{\gamma_1}} \left(\frac{p_1}{p_1}\right)^{\frac{\gamma_1 - 1}{\gamma_1}} - 1\right)}$$
(3)

The various compressor-outlet bleed and leakage flows were determined to be about 2 percent of the inlet-air flow. Although portions of the flow reenter ahead of the turbine (after station 5) and between turbine stages, this flow was ignored insofar as station 6 is concerned. However, the entire bleed and leakage flow has reentered the mainstream flow before passing through the exhaust nozzle. The air or gas flows at the various stations were calculated by the following equations:

$$W_{a.3} = W_{a.1} \tag{4}$$

$$W_{g,7} = W_{a,1} + \frac{W_f}{3600} \tag{6}$$

Compressor efficiency. - Compressor efficiency was calculated by use of the tables in reference 3 and neglecting water-vapor corrections. Using known values of compressor-inlet and -outlet total pressure and temperature, compressor efficiency was determined from the following expression:

$$\eta_{c} = \frac{H_{3,isentropic} - H_{1}}{H_{3,actual} - H_{1}}$$
 (7)

Combustion parameter. - Combustion parameter P_4T_3/V_b is most easily calculated by assuming that the burner-inlet Mach number is low enough that total and static values of temperature and pressure are nearly equal. Thus, it can be shown that

$$\frac{P_4 T_3}{V_b} = \left(\frac{A_b}{R}\right) \frac{P_4^2}{W_{a,4}} \tag{8}$$

where $A_{\rm b}$ is the maximum combustor flow area and is equal to approximately 5.3 square feet; and $V_{\rm b}$, which is not a real velocity at the combustor inlet, is used according to criteria previously established in order that various combustors could be compared on a fair basis.

Combustion efficiency. - Combustion efficiency is defined as the ratio of the actual enthalpy rise of the gas while passing through the engine to the theoretical increase in enthalpy that would result from complete combustion of the fuel:

$$\eta_{b} = \frac{H_{a,7} + \frac{W_{f}}{3600W_{a,1}} \lambda_{7} - H_{a,1}}{18,700 \frac{W_{f}}{3600W_{a,1}}}$$
(9)

where 18,700 Btu per pound is the lower heating value of the fuel.

5167

Turbine-inlet total temperature. - Turbine-inlet temperature was calculated by the use of temperature-enthalpy tables and the following equation:

$$H_{g,5} = \frac{W_{a,1} (H_{a,3} - H_{a,1})}{W_{g,5}} + H_{a,7}$$
 (10)

The difference in the fuel-air ratios between stations 5 and 7 is negligible with respect to calculation involving equation (10).

Turbine efficiency. - Turbine efficiency was obtained from the relation

$$\eta_{t} = \frac{1 - T_{7}/T_{5}}{\frac{\gamma_{t} - 1}{\gamma_{t}}}$$

$$1 - \left(\frac{P_{6}}{P_{5}}\right)$$
(11)

where $\gamma_{\rm t}$ is based on $\frac{{
m T}_5\,+\,{
m T}_7}{2}$ and fuel-air ratio.

REFERENCES

- Childs, J. Howard: Preliminary Correlation of Efficiency of Aircraft Gas-Turbine Combustors for Different Operating Conditions. NACA RM E50Fl5, 1950.
- 2. Turner, L. Richard, and Bogart, Donald: Constant-Pressure Combustion Charts Including Effects of Diluent Addition. NACA Rep. 937, 1949. (Supersedes NACA TN's 1086 and 1655.)
- 3. Amorosi, A.: Gas Turbine Gas Charts. Res. Memo. No. 6-44 (Navships 250-330-6), Bur. Ships, Navy Dept., Dec. 1944.

TABLE 1. - PERFORMANCE DATA

(a) Inlet guide vanes open.

Run	Com- pressor Reynolds number index, \$\frac{a_1}{\phi_1\sqrt{\beta_1}}\$	Altitude- exhaust pressure, Po- lb/sq ft	Flight Mach number, Mg	Equivalent ambient-air statio temperature, to, R	Engine- inlet total temper- ature, T1, oR	Engine- inlet total pressure, pl, lb sq ft abs	Compressor- inlet total pressure, P2, 1b	Compressor- outlet total tempera- ture. Ts'	Compressor- outlet total pressure, Ps, lb sq rt abs	Combustor- inlet total pressure, P4. 15	Turbins- inlet total temper- ature, Tg, R	Turbine- inlet total pressure, P5, 10 sq ft abs	Turbine- outlet total tempera- ture, T6, oR	furbine- outlet total pressure, Pg, 1b sq ft abs	Tail- pipe total temper- ature, T7, OR	Tail- pipe total pressure, P7, 1b ng ft abs
							Exhaus	t-nozzle ar	ma, 2.388 aq	ft						
1 2 5 4 5	0.922 .925 .928 .938 .959	2055 2043 2057 2039 2041	0 0 0 0 .	522 522 522 520 518	514 514 515 515 516	1952 1942 1944 1970 2014	1899 1913 1917 1951 2007	979 965 926 858 859	13616 13175 12022 9678 5887	15427 12952 11865 9516 5875	2050 1967 1610 1560 1450	12565 11462 9139 5340	1691 1824 1470 1246 1247	4418 4280 3949 3289 2477	1632 1872 1444 1247 1212	4315 4184 3840 3197 2452
6 7 8 9	.862 .854 .861 .871 .881	1186 1187 1176 1189 1176	.803 .806 .812 .798 .811	448 448 448 451 450	508 507 507 509 509	1915 1819 1812 1809 1811	1785 1797 1794 1792 1805	969 919 848 848 844	12794 11526 8781 8735 4911	12668 11241 6728 8877 4887	2018 1790 1458 1443 1063	12189 10795 8558 8314 4805	1654 1446 1161 1157 846	4146 3672 2807 2788 1718	1615 1419 1148 1142 839	4045 3554 2758 2724 1684
11 12 13 14 16	.857 .577 .575 .575	1165 769 775 782 766	.802 .815 .803 .800	454 445 446 447 448	512 502 504 504 505	1806 1195 1185 1192 1188	1802 1172 1187 1175 1174	734 987 954 916 844	4793 8515 8150 7425 5826	4774 8424 8078 7363 5785	1067 . 2028 . 1958 . 1790 .	4515 8119 7784 7079 5551	850 1635 1581 1441 1175	1708 2786 2539 2609 1843	848 1623 1558 1422 1152	16\$8 2692 2576 2547 1812
16 17 18 19	.576 .578 .575 .578	774 494 494 411 404	.811 1.21 1.20 1.21 1.21	447 394 395 394 395	508 609 509 510 510	1192 1209 1201 1206 1204	1187 1189 1184 1191 1192	726 974 958 921 848	3162 8487 8173 7485 5769	5146 6419 8106 7426 5732	1055 2020 1955 1790 1450	2984 8090 7798 7136 5493	844 1637 1583 1450 1165	1124 9763 2587 2494 1842	840 1618 1560 1424 1849	1100 2588 2585 2547 1797
21 22 23 24 25	.578 .382 .382 .387	456 482 485 490 490	1,22 ,804 ,805 ,805	395 445 444 442 442	51.2 502 502 499 502	1209 753 746 750 753	1905 742 737 740 743	726 970 954 934 917	5058 5353 5190 5039 4770	3031 5315 5151 4997 4739	950 2035 1980 1900 1800	2648 5106 4955 4904 4556	718, 1881, 1810, 1581, 1488	826 1738 1584 1686 1544	722 1528 1568 1506 1431	921 1894 1638 1565 1502
26 27 28 28 30	.567 .362 .567 .582 .220	481 502 482 482 501	.869 .768 .803 .788 .789	440 447 443 447 443	409 503 500 504 499	749 754 752 748 458	739 749 748 746 453	882 844 773 729 983	4551 5655 2761 1974 5263	1218 3622 2776 1961 3240	198% 1678 1220 1083 2020	41.33 3474 2832 1863 5115	1395 1165 987 887 1650	1.594 1180 901 899 1087	1519 1170 988 864 1514	1355 1140 876 888 1029
51 52 53 54 55	.225 .225 .220 .220	304 507 295 300 298	.805 .794 .819 .804	445 443 444 445 441	805 499 505 500 505	466 465 458 459 459	458 480 452 454 454	980 945 922 891 846	\$231 3143 2940 2700 2262	3208 3114 2915 2638 2960	1990- 1940 1850 1710 1500	5079 2998 2808 2577 2171	1635 1597. 1490 1379 1211	1048 1021 944 872 723	1590 1590 1452 1561 1168	1090 993 916 846 701
38 37 38 39 40	.224 .225 .139 .137 .136	307 310 195 189 185	.800 .795 .791 .808 .818	443 447 458 457 457	500 503 515 516 518	466 470 294 290 257	465 468 292 266 284	804 739 965 943 919	1950 1970 1880 1785 1849	1945 1205 1876 1744 1842	1330 1140 2000 1897 1770	1861 1201 1808 1672 1572	1049 895 1644 1546 1459	826 445 525 576 534	1051 912 1605 1519 1413	907 435 804 581 519
41 45 46 47	.138 .137 .100 .101 .101 .101	184 192 192 195 195 198	.791 .792 .417 .417 .418 .405	480 480 501 491 499 501	518 518 518 517 517 517	293 290 216 220 220 219 221	290 28# 214 217 218 218 220	883 800 981 945 918 676 821	1445 932 1365 1360 1209 1042 675	1440 929 1359 1312 1198 1052 670	1505 1300 1971 1907 1605 1645 1590	1574 884 1508 1288 1148 967	1303 1067 1637 1597 1494 1350 1366	456 322 454 439 395 355 359	1284 1037 1582 1532 1448 1320 1317	453 319 441 428 584 547

TABLE I. - Continued. PERFORMANCE DATA

(a) Continued. Inlet guide vanes open.

Rogine speed, N, rpm	Cor- rected engine speed, H	Compressor- inlet tip Mach mumber, K _c	Engine air flow, Wa,1' lb/sec	Operanted air flow, \[\frac{\sigma_0}{\text{b_1}}, \frac{\sigma_0}{\text{b_1}}, \frac{1}{\text{b_1}},	Con- pressor pressure ratio, P ₃ /P ₁	Cou- pressor effi- uiency, No	Compressor- discharge pressure- les ratio, (P3-P4)/P5	Combustor pressure- loss ratio, P ₄ -P ₅	Combus- tion sffi- siency, n _b	Combus- tion param- eter, PATS Vb	Combus- tion param- eter, Wa,177K	Turbine Reynolds number index 5 ₅	turbine speed,	Corrected turbine gas flow, Wg,5-\Gamma 65 h, lb/sec	offi- cionay, $\eta_{\rm t}$	Corrected turbine enthalpy drop, AH, /OB, Btu Ib-seq	furbine pres- sure ratio, Pb/P	Run
_							Exhaust	nossle ar	ea, 2,38	8 sq ft						_		
7955 7792 7409 6680 5498	7993 7830 7438 8706 5514	1,002 .982 .933 .641 .681	151.3 129.7 125.1 107.1 64.6	143,1 140,7 153,5 114.8 67,7	7,048 6,785 6,184 4,882 2,774	0.814 .824 .847 .850 .715	0,014 .017 .015 .007 .002	0,035 .030 .084 .040	0.988 .979 .979 .982	13.9 13.1 11.8 8.56 4.87	21,4 20,4 17.6 13.4 7.03	1.23 1.17 1.21 1.16 .74	4079 4064 4016 5890 5346	45.0 45.2 43.0 43.2 42.6	0.850 .867 .865 .862 .843	29.7 29.8 29.4 28.5 21.8	2.941 2.956 2.905 2.798 2.156	1 2 5 4 5
7992 7413 6686 6670 5502	8023 7509 8764 6735 5556	1.008 .842 .848 .845	124.0 117.3 100.8 99.5 66.5	142.9 134.7 116.4 116.5 76.7	7.057 6.228 4.846 4.828 2,712	.807 .835 .845 .853 ,752	.01.0 .006 .006 .006	.038 040 042 042	.977 .991 .995 .981	14.3 10.9 7.65 7.65 5.65	20.0 18.6 11.6 11.4 5.56	1.15 1.17 1.14 1.15 .93	4075 4051 4024 4042 3883	45.2 45.1 42.9 42.3 45.3	.872 .877 .857 .839 .867	30.0 30.0 30.7 27.0	2.940 2.940 2.978 2.982 2.680	6 7 8 9 10
5496 7953 7795 7417 6888	5536 9086 7910 7527 6780	.694 1.014 .992 .844	62.5 82.1 80.1 78.7 68.2	72.8 143.5 141.0 154.1 116.5	2.654 7.137 6.876 6.929 4.912	.742 .804 .815 .833 .851	.004 .011 .009 .008 .007	.068 .038 .039 .039	.974 .989 .988 .981 .980	3.69 8.74 8.25 7.15 5.12	6.38 13.3 19.5 10.9 7.68	.91 .77 .76 .77 .78	3875 4080 4084 4040 4015	41.8 45.1 45.1 45.1 42.5	.874 .868 .878 .874 .852	26,8 30,0 30,0 80,0 50,0	2,653 2,935 2,942 2,939 3,012	11 12 14 14 14
5494 7983 7792 7420 8682	5584 8031 7888 7485 8741	.698 1.007 .987 .938 .845	42.3 82.2 80.3 76.7 65.8	74.1 149.4 140.1 155.5 114.7	2.653 7.020 8.805 6.906 4.792	.729 .806 .817 .840	.005 .008 .008 .008 .008	.058 .059 .058 .059 .042	.967 .985 .985 .977 ,982	2.37 8.75 8.29 7.28 5.05	3.55 15.3 19.5 10.9 7.56	.59 .76 .76 .77 .75	3893 4088 4088 4044 4019	42.5 43.2 43.1 42.7 42.6	.866 .864 .884 .863 .858	27.0 29.8 50.4 29.7 30.0	2.655 2.928 2,955 2,944 8,882	11 11 11 20
5492 7951 7766 7551 7420	5530 9084 7919 7782 7544	.693 1,014 .985 .978 .948	43.3 51.8 50.2 50.1 48.8	75.9 148.7 150.9 158.5 154.9	2.526 7.109 6.957 6.719 6.555	.724 .796 .814 .821 .832	.008 007 .008 .008 .009	.060 .038 .038 .038	1,004 ,978 ,955 ,984 ,971	2,15 5,84 8,35 5,05 4,65	5,12 8.42 7.86 7.53 6.98	.66 .48 .48 .49 .49	4129 4070 4060 4039 4031	42.5 45.2 45.5 49.8 42.9	.845 .868 .869 .887 .889	29.4 30.0 50.0 29.7 30.0	3.010 2.938 2.941 2.951 2.938	30000
7097 6670 6015 6492 7645	7937 6765 6126 5573 6000	.908 .848 .788 .699 1.003	46.1 41.3 34.9 25.6 30.9	127.8 113.7 95.5 71.4 139.9	5.762 4.832 3.698 2.639 7.124	.849 .831 .827 .715 .799	.004 .009 .002 .007	.042 .043 .052 .050 .039	.974 .940 .984 .984 .987	4.09 3.22 2.25 1.58 3.44	6,08 4.83 3.34 2.22 4.98	.48 .47 .44 .37	4005 3990 3977 3843 4030	42.6 42.5 43.1 41.8 42.2	.657 .653 .668 .853 .871	29.0 29.0 29.2 27.0 29.9	2.965 2.944 2.921 2.685 2.946	2 2 2 2
7782 7655 7405 7106 6857	7905 7804 7522 7840 6778	.991 .979 .843 .908 .848	81.1 30.7 29.1 28.3 25.3	158.9 157.2 159.4 126.2 115.1	6.935 6.759 8.419 5.862 4.972	.802 .805 .833 .834 .847	.008 .009 .009 .005	.040 . 037 .038 .041 .039	.952 .955 .936 .953 .967	5.35 5.19 2.95 2.58 2.04	4.84 4.73 4.23 3.88 5.01	.31 .30 .29 .29	4026 4007 3990 3960 3960	42.5 42.6 41.8 42.6 42.2	.875 .886 .871 .853 .856	30.0 20.8 29.7 20.6 20.5	2,959 2,958 2,958 2,955 3,003	5 5 5 5
6965 5564 7899 7407 7178	6383 5652 7659 7429 7185	.800 .834 .980 .932 .901	22.8 16.5 17.9 17.5 16.5	101.5 72.2 198.5 126.5 122.0	4.167 2.702 6.420 6.050 5.745	.824 .598 .793 .803 .826	.004 .004 .007 .006 .004	.042 .051 .057 .041 043	.978 .829 .906 .906 .925	1.67 .99 1,99 1.78 1.65	2.40 1.48 2.87 2.62 2.34	.28 .22 .17 .17	3980 3801 3940 3924 3931	41.8 42.4 42.0 42.4 41.7	.856 .846 .871 .679 .850	30,0 26,9 29,3 29,2 29,4	2.975 2,699 2.889 2.885 2.885	33354
5826 5011 7508 7345 7060 6678 6002	6835 6017 7514 7359 7093 6891 6013	.857 .755 .942 .923 .889 .839	15.5 11.1 12.8 12.6 11.8 10.9	111.5 81.2 124.8 121.2 113.0 104.7 68.4	4.932 5.212 6.308 5.987 5.564 4.756 3.045	.812 .722 .803 .796 -786 .800 .633	.004 .003 .004 .005 .005	.046 .048 .040 .041 .040 .044	.930 .883 .887 .908 .903 .915	1.38 .78 1.48 1.58 1.23 .99	1198 1.16 2.02 1.93 1.70 1.43	.16 .13 .19 .19 .19	3921 3829 3908 3879 3845 3794 3464	42.1 42.1 41.1 41.3 41.0 41.8 42.0	.827 .858 .869 .862 .848 .859	29.4 27.9 29.2 29.2 28.6 26.2	2.848 2.745 2.874 2.885 2.906 2.780 2.428	2004044

TABLE I. - Continued. PERFORMANCE DATA

(a) Continued. Inlet guide vanes open.

Run	Cop- pressor Reynolds runber index, 81 *17/81	Altitude- estaust procesure, PO: 18/eq ft	Filight Hach thumber, Ho	Equiv- slent ambient- sir statis tempers- ture, to,	Engine- inlet total temper- ature, T1:	Engine- inlet total pressure, P ₁ ; 1b Mg IT Abs	Compressor- inlet total pressure, Pgr 1b Eq IT 854	Compressor- outlet total tempera- ture, T3, o,	Compressor- outlet total pressure, Ps; 1b eq ft abs	Combustor- inlet inlet pressure, y a,' lb aq ft abs	Turbine- inlet total temper- sture;	Turbine- inlet total pressure, Pg, 1b	Turbine- outlet total tempera- ture, T _G ,	Turbing- outlet total pressure, Par 1b eq ft abs	Tail- pips total tamper- ature, T ₇ , o _R	Tail- pipe total pressure, P,' 1b aq fc abs
			·····				Exhquat	-nossle ere	, 2.514 eq	ſt						
22812	0.949 ,938 ,947 ,949 ,956	2050 2052 2053 2048 2048	0000	514 514 514 614 612	506 506 806 506 506	1945 1957 1962 1942 1969	1810 1857 1850 1858 1808	965 949 916 914 946	13478 13077 12082 12029 9881	13978 13918 11966 11926 8509	1940 1880 1763 1780 1627	12478 12478 11516 11473 9248	1596 1535 1412 1400 1201	4914 4115 5855 5839 5261	1533 1483 1392 1386 1220	4140 4034 5775 5788 3808
17 M 85 17	.956 .984 .984 .85 m	2002 2085 2081 1008 1185	.840 .806	613 669 710 441 440	607 617 348 143 503	1972 2058 2054 1879 1812	1911 2015 2014 1838 1776	848 750 780 969 958	9784 8689 6839 12509 12553	9050 5650 5613 10241 12418	1830 1438 1480 1950 1850	9278 5435 5578 11780 11965	1824 1237 1352 1549 1662	3271 2515 2520 5740 3875	1824 1814 1238 1500 1496	3210 P484 B498 3657 3790
35858	.855 .851 .897 .897 .548	1171 1171 1193 1198 777	.80% .799 .799 .806	448 446 446 446	:01 500 501 809 499	179/ 1794 - 1816 1828 1191	1763 1771 1786 1612 1172	84.2 806 856 723 868	19194 11177 8805 4900 4995	10065 11065 8739 4679 8226	1850 1893 1415 1050 1995	11627 10638 8573 4618 7914	1492 1331 1116 856 1651	3749 3448 2791 1730 2665	1452 1324 1108 832 1513	3664 3364 2660 1699 2504
いるので	.581 .581 .581	780 780 784 779 475	.809 .803 .804 1,23	444 447 445 445 588	501 300 400 800	1900 1199 1194 1192 1193	1191 1191 1187 1187 1174	943 906 856 727 901	4772 7533 5601 3506 8511	8011 7279 5770 3287 8238	1683 1703 1415 1080 1807	7696 8892 5590 3111 7916	1482 1350 1111 844 1584	2505 2278 1798 1140 2529	1488 1539 1113 855 1500	2445 2217 1766 1127 2460
68 61 70 71 78	,683 ,685 ,680 ,681 ,373	488 489 478 498 494	1.24 1.24 1.22 1.21 .806	388 387 382 589 441	505 506 516 518 488	1195 1194 1196 1206 757	1174 1179 1185 1904 748	944 911 840 792 968	7994 7548 8649 2835 8504	7888 7553 5696 6609 8667	1638 1670 1873 895 1930	7848 6991 5686 2457 5061	1458 1228 1076 682 1553	2451 2818 1484 865 1656	1440 1315 1065 590 1524	2378 2166 1646 648 1601
73 74 76 76 77	,430 ,571 ,450 1371 ,425	483 498 451 492 490	.815 .798 .808 .809	301 646 584 643 335	443 500 445 488 446	747 757 754 756 761	734 747 741 747 740	867 940 863 904 808	5683 5107 5317 4674 4683	8681 8073 8289 4846 4538	1897 1883 1763 1715 1800	5454 4871 5085 4485 4556	1517 1510 1410 1357 1107	1744 1579 1833 1449 1401	1494 1454 1577 1548 1177	1702 1548 1548 1418 1418
78 79 80 81	.570 .307 .863 .863	446 446 310 308 304	.782 .508 .975 .792 .815	446 444 386 387 438	501 509 448 447 498	754 748 489 467	£5624	827 790 903 869 959	3640 1925 3487 3275 3200	3625 1917 3463 3246 3245	1459 1067 1920 1778 1617	3470 1815 5340 5125 5114	1128 847 1864 1455 1864	11.86 686 1086 1001 1009	1150 859 1819 1368 1508	1108 874 1044 974 987
83 84 85 86 87	.201 .208 .200 .244 .P27	296 204 216 205 208	.830 .786 .821 .800	457 457 387 458 448	494 497 448 497	460 463 476 456 464	458 458 470 455 484	942 904 805 835 927	31 EL 2800 2001 2279 1985	5141 2859 2785 2785 2280 1214	1880 1715 1883 1443 1003	3010 2752 2677 2157 1144	1812 1383 1211 1121 879	954 876 856 683 435	1480 1348 1186 1134 870	943 886 885 875 755
88 80 81 88	150 140 157 140 138	185 195 186 190 187	.793 .795 .796 .802 ,808	407 441 407 440 440	458 486 450 486 497	291 292 293 293 290 297	268 269 278 268 264	986 972 883 951 914	2006 2000 1971 1983 1778	2264 2045 1961 1950 1767	1988 9017 1850 1940 1797	9901 1956 1964 1871 1891	1596 1410 1485 1554 1400	643 660 595 602 543	1554 1804 1445 1557 1485	829 819 561 560 533
\$5 \$4, 65 66 87	,154 ,154 ,154 ,154	184 184 188 197 192	,809 ,800 ,815 ,455 ,475	408 439 441 442 441	444 444 444 444 444 444 444 444 444 44	293 296 201 227 224	279 954 262 222 221	893 840 733 934 906	1712 1859 782 1484 1563	1701 1356 785 1641 1550	1.543 1490 1147 2007 1893	1435 1294 710 1616 1400	1259 1155 923 1657 1840	480 417 265 503 478	1919 1170 916 1585 1486	478 409 263 482 488
96 98 100 101 102	,10b ,105 ,104 ,107 ,124	188 180 187 183 184	.476 .486 .487 .487	478 475 474 478 443	457 457 456 457 453	221 223 220 224 224	218 260 217 224	971 970 987 985 945	1545 1539 1501 1581 1514	1538 1838 1497 1497 1378	9050 9087 1990 1880 1860	1479 1479 1456 1825 1250	1638 1656 1866 1476 1386	478 478 485 436 406	1509 1835 1886 1486 1315	449 445 451 426 384
103	,106 ,106 ,106	192 177 187	,180 ,584 ,539	477 484 472	497 488 489	225 225 218	290 292 237	881 786 773	1002 784 694	1,081 790 eps	1,666 1,573 1,377	1014 768 663	196a 1129 1134	34.7 089 96.7	1234 1106 1126	341 266 267

TABLE I. - Continued. PERFORMANCE DATA

(a) Continued. Inlet guide vanes open.

Progine speed, N, Type	Our- rected engine speed, H	Compressor- inlet tip Mach number, H	Engine air flow, Ya,1' lb/see	Corrected air flow, -/51 Wa,1-51 1b/mec	Com- pressure pressure ratio, Py/P ₁	Con- pressor effi- eistor, 7 ₆	Compressor- discharge pressure- loss ratio, (Pg-P41/Pg	Ocmbes tor pressure- less ratio, 74-78	Combinetion offi eimey,	Combus- tion paras- ster, P475 Tb	Dombus- tion pares- eter, Ya,1 ² 7 ⁴	Turbine Reynolds Rumber Index, 5g	Cor- rected tambine speed, -/V ₃ rpm	Cor- rected turbine gas flow, Wg. 5-/45 05 lb/see	Turbine effi- elency, R	Corrected turbins setted by drop, AN, 45, 10-sec	Turbine pres- ence ratio, P _B /P _B	Burn
	1			···		ı -	Exhaust-	-nossle ar	m., P.81	s sq rt								
7945 7790 7417 7408 8665	5C55 7868 7512 7504 8750	1.010 1.000 .948 .941	134.3 151.3 195.8 195.0 108.1	144.2 141.8 134.5 154.4 114.7	8.934 6.751 6.195 4.194 4.892	0,805 ,819 ,834 ,839 ,852	0,015 ,012 ,010 ,008	0.055 .054 .058 .058	0,975 ,965 ,884 ,973 ,948	13.5 12.9 11.5 11.5 8.64	20:8 19:5 17:5 17:4 18:2	1.24 1.27 1.87 1.08 1.18	4180 4143 4089 4087 3921	43.8 43.0 43.1 48.8 48.8	0,877 .878 .876 .877 .662	30.8 30.6 30.1 30.2 28.7	5,044 5,032 2,687 2,994 2,835	48 48 53 53 53
6470 5489 5489 7941 7959	6748 5563 5548 5066 5064	,616 ,696 ,696 1,011 1,011	108.6 65.5 65.3 119.6 125.0	115.9 87.3 85.2 148.9 143.7	4.838 9.791 2.787 7.527 4.868	.860 .711 .705 .835 .806	,010 ,008 ,008 ,008 ,011	.027 .042 .042 .066 .067	.978 .966 .965 .958 .975	8.66 4.96 5.04 12.7 12.5	15.3 7.85 7.80 17.8 18.7	1.18 .76 .74 1,17 1.18	3919 3359 3311 4203 4200	48,8 48,5 41,8 41,7 48,9	.846 .844 .845 .869 .879	26,7 21,7 21.5 31.0 31.0	2,836 2,162 2,134 3,150 3,069	53 54 55 56 57
7794 7429 6699 5473 7547	7935 7549 8618 5645 8104	.995 .948 .855 .895 1.018	198.9 117.7 105.1 67.0	142.6 136.0 118.1 76.5 143.4	6.786 6.216 4.949 9.668 6.965	.618 .635 .846 .741 .800	.006 .006 .006 .004	.057 .040 .048 .054 .058	.968 .967 .994 1.023 .974	10.0 10.6 7.50 3.60 8.33	17.5 15.6 11.4 5.57 12.4	1.22 1.22 1.17 .94 .79	41.78 41.55 4090 3884 4181	48.9 48.7 43.1 45.4 45.0	.876 .879 .865 .869 .864	31.0 31.0 30.0 97.0 21.0	3.109 3.067 3.077 2.684 3.067	28 25 28 28 22 28 28 22 28
7790 7415 6678 6650 7888	7921 7547 6804 8424 8078	.448 .853 .707 1.013	81.5 77.4 47.9 44.3 81.1	141.4 184.7 117.7 77.2 142.0	8.727 4.136 4.842 9.775 6.066	.859 .841 .746 .811	.008 .007 .005 .006	.056 .036 .043 .054 ,036	.987 .978 .997 1.040	7.07 8.93 4.88 P.47 B.47	11.9 10.3 7.54 3.79 18.8	.80 .80 .78 .61	4179 4157 4080 3875 4810	49,9 49,9 43,1 48,2 42,17	.864 .860 .837 ,865 ,868	31,0 31,2 30,6 27,0 31,0	3.076 3.072 3.070 2.799 3.130	18882
7788 7413 8878 5438 7845	7693 7606 8737 5463 8111	.990 .948 .845 .684 1.017	19.9 17.0 85.7 . 40.3 59.0	139.9 154.8 115,1 70,4 148,4	8.701 8.156 4.862 2.547 7.007	.622 .642 .661 .665 .797	.005 .002 .004 .009	,059 ,047 ,045 ,061 ,039	,958 ,966 ,964 ,964	5.00 7,08 5.23 1,98 5.40	11.5 10.1 7.09 9.78 7.83	.82 .62 .65	435 436 444 445 475	42,1 42,2 40,6 42,0 42.5	.570 .539 .823 .854 .667	31.4 31.1 31.1 39.9 30.9	3,190 3,192 3,305 3,038 5,083	\$69 70 71 71
7845 7788 7685 7408 6847	8599 7935 8834 7648 7494	1.078 .995 1.035 .947 .940	55.5 57.5 54.9 49.4 80.3	145.9 141.9 142.5 185.7 181.4	7.506 6.745 7.052 6.185 6.076	.762 .806 .792 .835 .841	.006 .007 .005 .006	.058 .040 .038 .038	.988 .954 .983 .976 .954	5.58 4.55 5.16 4.42 4.14	8.31 7.48 7.55 4.65 8,92	.55 .51 .56 .50	4300 4171 4190 4118 4125	49.0 42.8 42.4 43.0 41.8	.880 .880 .883 .858 .846	30,9 31,3 30,9 30,6 30,7	3,113 3,085 3,114 3,086 3,108	73 74 75 76 77
8870 8488 7848 7819 7941	8789 5583 6671 5909 9125	.451 .493 1.075 1.089 1.018	48,0 24.4 34.9 35.4 39.9	115.1 68.7 163.7 140.6 142.0	4.508 2.580 7.435 7.009 6.964	.838 .738 .780 .784 .765	.007 .004 .007 .008	.043 .053 .036 .036	.970 .872 .980 .954 .945	3.17 1.61 3.63 3.19 3.31	4.78 9.11 6.00 4.87 4.86	,48 ,35 ,35 ,31	4081 3828 4184 4170 4187	42.7 41.0 42.5 42.4 49.7	,838 ,839 ,854 ,653 ,880	30.2 25.3 30.8 30.9 30.4	3,089 2,681 3,194 3,194 3,085	78 79 80 81 81
7795 7390 6938 6667 5504	7974 7559 7478 6813 5619	1.000 .947 .938 .854 .704	31.1 30.3 31.1 26.0 18.3	159,7 155.7 128.0 117.4 72.5	8.872 8.261 5.884 4.850 3.834	.609 .833 .815 .848	.006 .007 .006 .006	.042 .041 .038 .041 .069	.926 .990 .951 .998 .859	5.21 9.75 2.52 1.89	4.63 4.07 3,79 2.85 1.43	.31 .31 .35 .30	4165 4111 4088 4038 3636	41.8 49.7 49.3 49.5 45.6	.674 .658 .658 .651 .879	31.1 30.8 50.2 30.2 87.2	5,122 3,135 3,130 3,127 2,630	83 84 85 88 87
7962 7963 7627 7771 7364	8166 8166 8130 7949 7845	1.062 1.084 1.017 .987	20.6 20.0 20.0 19.3 16.3	142.0 141.6 141.0 138.0 151.7	7.588 7.086 4.977 4.789 4.185	.781 .870 .778 .764 .808	.005 .007 .006 .006	.036 .050 .042 .043	.957 .983 .958 .980 .975	2.84 2.12 1.85 1.89 1.78	2.34 3.20 2.86 2.87 2.80	.21 .19 .80 .19	4144 4100 8181 4089 4018	39.4 48,1 42.8 43.0 43.0	.608 .848 .848 .802 .841	30.7 30.7 30.7 50.8 50.1	3.423 3,121 3,167 3,100 3,114	88 89 80 81 82
4560 4544 6586 7951 7648	797) 6765 5637 8446 8106	.01P .851 .707 1.059 1.017	18,1 15.7 9,0 18,0 15,6	127,5 113,6 68,7 140,8 138,0	6,058 4,759 2,719 7,425 6,845	.857 .811 .694 .744 .761	.008 .009 .009	.039 .048 .059 .059	.987 .976 .746 .983 .986	1.42 1.19 .44 1.79 1.50	2,20 1,95 -83 2,55 1,33	.21 .17 .13 .16 .15	401.7 5958 3748 4098 4053	40.6 45.6 39.6 42.0 42.1	.787 .825 .840 .830 .852	50,1 29,6 26,6 30,6 30,4	3,357 3,103 2,913 3,912 3,108	95 96 95 96
7904 7804 7742 7434 6904	9069 9058 7919 7899 7407	1.016 1.010 .983 .953	14.7 14.8 14.7 14.0 18.4	150,1 150,0 150,5 120,5 120,6	4.962 4.955 4.525 6.145 5.791	.784 .773 .778 .782 .786	.005 .002 .005 .004	.058 .057 .041 .067	.925 .953 .966 .184 .989	1.42 1.61 1.54 1.37 1.21	2.57 3.41 2.33 2.00 1.89	.14 .16 .14 .14 .15	4002 4031 4006 5965 3962	48,1 42,9 43,5 43,1 43,5	.866 .847 .841 .851 .851	30.4 30.2 30.1 30.0 29.7	5.087 5.084 5.100 5.039 5.101	18 100 101 102
6634 8112 5784	6779 6940 5900	.850 .782 .740	11.6 9.6 9.4	108.5 68.8 76.7	4.784 3.580 3.044	.766 .748 .681	.001 .008 .018	.014 .069 .058	,902 ,852 ,841	.98 .66 .56	1.44	.13 .11 .16	5873, 5782 5585	42,2 43,4 43,8	.858. 918. 039.	29.3 27.2 25.4	2.822 2.822 2.550	103 104 106

TABLE I. - Continued. PERFORMANCE DATA

(a) Continued. Inlet guide vanes open.

Run	Com- pressor Reynolds number index, δ1 •1√θ1	Altitude- exhquet pressure, Po, lb/sq ft	Plight Mach number, Mo	Equiv- alent ambient- air static tampera- ture, to, o,	Engine- inlet total temper- ature, T ₁ ,	Engine- inlet total pressure, P1, 1b sq ft abs	Compressor- inlet total pressure, P2' 1b sq ft abs	Compressor- outlet total tempera- ture, TS, on	Compressor- outlet total pressure, P5: 1b aq ft aba	Combustor- inlet total pressure, P4, lb sq ft abs	Turbine- inlet total temper- ature, To R	Turbine- inlet total pressure, p, 1b aq ft abs	Turbine- outlet total tempera- ture, T6, o	Turbine- cutlet total pressure, Pg, 1b sq ft abs	Tail- pipe total temper- ature, T,	Tail- pipe tetal pressure, P7, 1b sq ft abs
							Exhaust-	nozzle area	, 2.894 sq f	t						
108 107 108 109 110 111 112 113	0,938 .942 .942 .958 .978 .888 .688	2053 2059 2050 2056 2055 1150 1163	.805 .805	514 514 515 5111 513 445 447	505 506 506 506 506 508 503 504	1933 1942 1944 1976 2004 1808 1805	1901 1912 2114 1957 1997 1771 1771	956 942 909 844 747 949 933	15079 12684 11740 9605 5727 12108 11697	12896 12537 11627 9587 5709 11994 11690	1807 1750 1840 1455 1560 1756 1680	12449 12084 11177 9169 5457 11526 11111	1445 1400 1504 1151 1183 1584 1584	. 3851 3772 3847 5063 2424 8459 3543	1405 1558 1272 1145 1140 1555 1292	5762 5664 5458 3032 2403 5365 3847
111 112 113 114 115	.888 .888 .890 .891 .890	1180 1183 1191 1188 1194	.805 .802 .798 .803 .795	445 447 447 448 450	505 504 504 506 507	1806 1805 1818 1815 1810	1771 1771 1785 1794 1800	949 953 899 832 720	12106 11697 10695 8432 4576	11994 11590 10604 8363 4558	1756 1680 1550 1315 1010	11526 11111 10174 7981 9275	1364 1354 1210 1011 791	3458 3343 3061 2420 1588	1335 1292 1194 1005 798	3363 3247 2981 2382 1562
116 117 118 119 120	,585 ,585 ,585 ,580 ,580	775 774 776 769 778	.814 .815 .811 .815 .811	445 445 445 446 448	504 504 504 505 507	1197 1198 1198 1189 1188	1172 1172 1177 1175 1192	950 935 901 832 721	7955 7702 7050 5529 5068	7905 7845 8996 5508 1015	1750 1700 1560 1325 3048	7581 7351 6709 5244 2877	1362 1327 1209 1013 786	2283 2202 2011 1580 1045	1547 1307 1199 1015 801	2208 2135 1965 1852 1029
121 122 123 124 125	,596 ,591 ,582 ,582 ,579	488 479 468 477 482	1.22 1.22 1.24 1.25 1.21	384 384 362 386 391	498 499 500 505 506	1907 1200 1195 1199 1188	1181 1179 1186 1072	946 931 899 629 714	8190 7891 7234 5650 2996	8080 7882 7165 5822 2970	1775 1707 1577 1500 867	7741 7557 6865 5349 2786	1387 1532 1216 990 649	2521 2244 2049 1585 860	1566 1317 1218 992 670	2256 2167 1987 2535 635
126 127 128 129 130	.427 .427 .370 .368 .870	478 489 498 485 503	.818 .799 .809 .795	392 392 447 439 448	444 504 497 504	497 490 758 748 761	727 751 744 730 748	891 855 982 928 936	5449 51.57 501.0 4906 4845	5426 8109 4981 4889 4819	1770 1627 1765 1685 1703	5217 4908 4774 4875 4615	1396 1290 1419 1340 1544	1558 1468 1441 1511 1594	1575 1255 1554 1297 1509	1506 1416 1395 1292 1546
131 132 133 134 135	.371 .570 .428 .378	495 498 480 502 501	.803 .798 .615 .806 L794	440 447 391 441	497 504 445 498 500	757 757 485 769 789	751 745 751 761 757	897 905 792 826 716	4514 4442 4366 3566 1936	4480 4405 4356 3553 1926	1570 1573 1595 1395 1016	4254 4259 4165 5560 1880	1232 1224 1069 1016	1301 1259 1246 1056 674	1207 1212 1067 1016 800	1264 1224 1204 1016 664
136 137 138 139 140	.267 .269 .267 .229 .230	298 306 298 307 314	.828 .819 .826 .809 .795	390 391 391 441 444	445 445 444 499 500	487 475 486 472 476	459 458 459 468 472	892 857 848 950 951	5395 5210 5141 5112 5125	3577 5195 3126 3094 3111	1790 1655 1613 1793 1800	3234 3064 2995 2961 2976	1417 1312 1275 1406 1409	973. 920 897 897. \$05.	1388 1278 1248 1390 1398	\$40 889 866 869 875
141 142 143 144 145	.227 .227 .225 .267 .228	302 500 301 301 509	.813 .802 .806 .809 .794	441 443 445 392 444	499 500 500 443 500	466 470 461 463 468	461 486 456 457 464	958 932 908 796 833	3039 3000 2761 2754 2176	3090 2982 2737 2722 2359	1780 1730 1830 1413 1355	2895 2649 2627 2506 2059	1565 1358 1261 1096 1040	870 864 769 778 829	1356 1359 1254 1093 1046	844 857 768 750 815
146 147 148 149 150	.229 .132 .148 .158 .158	320 179 188 195 198	.778 .815 .795 .786 .777	449 439 441 443 444	503 497 497 498 498	477 277 285 293 295	477 266 274 263 289	727 962 942 912 825	1204 1945 1888 1769 1301	1196 1936 1860 1749 1294	1080 1860 1767 1847 1397	1135 1850 1788 1872 1833	265 1505 1422 1319 1064	427 549 529 502 579	839 1442 1366 1274 1021	415 531 513 487 366
151 152 153 164 165 156	.135 .105 .125 .119 .112	192 193 193 200 204 202	.777 .388 .450 ! .499 ! .478	445 483 479 481 474 487	499 496 497 498 488 500	286 214 219 226 258 222	265 207 212 219 235 219	757 968 946 913 886 819	851 1445 1441 1501 1917 913	845 1442 1597 1299 1211 906	1173 1925 1837 1697 1488 1410	804 1370 1340 13257 1161 867	915 1862 1484 1386 1880 1830	270 421 408 585 587 500	922 1506 1432 1524 1197 1121	255 406 386 375 357 293

TABLE I. - Continued. PERFORMANCE DATA

(a) Continued. Inlet guide vanes open.

Engine speed, N, rps	Cor- rected engine speed, W	Compressor- inlet tip Kach number, Ng	Engine air flow, Wa,1, lb/sec	Corrected air flow, $\sqrt{\theta_1}$ Wa, $1 \frac{\theta_1}{\theta_1}$ lb/sec	Com- pressure pressure ratio, P3/P1	Cum- pressor effi- eisnoy, n _o	Compressor- discharge pressure- loss ratio, (P3-P4)/P3	Combustor pressure- loss rutio, P4-P5 P4	Combus- tion effi- ciency, n	Combus- tion pares- eter, P4T5 b	Combus- tion param- eter, Wa,1 ^T /K	Tersine Reynolds number index, 05	Cor- reated turbine speed, N -/85	rected turbine gas flow, WS.57/85, 5 1/85, 1b/890	Turbine effi- clency, n _t	Corrected turbine enthalpy drop, AH, eg, Btu Ib-seq	Turbina pras- sure ratio, P _B /P ₈	Rum
							Exhaust	-nomele ar	a, 2.69	eq ft								
7955 7788 7490 6586 5498	8065 7895 7529 6778 5568	1,011 ,990 ,943 ,850 ,868	135.2 131.7 125.5 106.9 68.1	143.9 141.6 134.8 115.0 71,1	6.765 6.521 8.039 4.851 2.858	0.804 .810 .832 .845 .735	0.014 .010 .001 .005 .005	0,035 ,036 ,039 ,041 ,044	0.963 .958 .959 .962	12.8 12.1 10.9 8.49 4.84	18.7 17.9 16.0 12.5 7.75	1.31 1.34 1.33 1.25 ,81	4314 4289 4220 4054 3426	42.8 49.8 49.5 49.2 42.6	0.879 .880 .864 .651 .841	52.3 59.5 59.0 50.1 29.9	5.255 5.204 5.152 2.974 2.251	106 107 108 109 110
7953 7786 7415 6678 5411	8078 7901 7585 6763 5475	1.015 ,991 .944 .848 ,887	124.8 122.8 117.7 101.0 63.9	144.1 141.8 135.5 116.2 75.6	6,705 5,480 5,802 4,848 2,529	.804 .891 .635 .848 .722	,006 ,009 ,008 ,008	.039 .041 .041 .048 .087	.941 .957 .975 .998 1,016	11.7 11.1 9.67 7.04 8.29	15.6 15.9 14.1 10.9 5.09	1.29 1.29 1.30 1.22	4399 4373 4352 4229 3915	49.3 42.4 42.8 49.5 43.5	.885 .877 .859 .884 .870	53.0 53.0 53.0 52.0 27.0	5.353 5.323 5.323 3.298 2.710	111 112 113 114 115
7848 7765 7411 1674 8448	8067 7910 7591 8788 5508	1.017 .962 .945 .848 .881	82.5 80.8 77.2 65.7 42.3	145.7 141,1 134.7 117.9 73.9	\$.846 5.445 5.900 4.850 2.561	.802 .814 .832 .848 .725	.006 .007 .006 .004 .007	.041 .041 .041 .048	,972 ,952 ,971 1,008 1,008	7,67 7,52 6,42 4,50 2,29	11.1 10.6 9.25 6.77 3.39	.84 .86 .60	4378 4354 4316 4213 3929	42.7 42.6 42.4 42.9 43.2	.880 .877 .865 .851 .863	53.0 53.0 53.0 51.0 98.0	5.521 5.529 3.537 5.519 2.755	116 117 118 119 120
7955 7784 7441 6686 5470	6121 7945 7581 6791 5540	1.018 .997 .951 .852 .685	82,9 82,3 78.4 67,7 45,1	142.4 142.2 156.2 117.7 75.8	6.727 8.876 5.064 4.71P 2.522	.871 .815 .835 .855 .785	,005 ,001 ,010 ,005 ,009	.044 .044 .048 .048 .068	.984 .890 .981 .892	7,97 7.84 6.53 4.73 2.07	11,8 10.8 9,53 6,71 2.84	,85 ,86 ,85 ,83	4358 4348 4313 4268 4253	42.4 42.3 42.4 41.7 41.7	.876 .855 .856 .859	53.0 52.9 52.9 52.4 50.9	3.359 3.369 3.349 3.380 3.239	121 122 123 124 125
7954 7519 7958 7794 7792	8811 8238 8071 7864 7907	1,060 1,053 1,018 ,999 ,999	84,8 54,1 51,7 50,8 50,6	144.8 142.4 142.5 140.9 158.7	7.364 5.914 5.609 8.575 6.364	.758 .791 .798 .814 .802	,004 ,006 ,008 ,008 ,008	.058 .040 .048 .038 .041	,984 ,987 ,934 ,941 ,997	5,44 4.89 4.85 4.72 4.43	7.52 6.78 2.69 6.59 2.56	,57 ,59 ,58 ,54 ,54	4361 4346 4363 4372 4347	41.5 41.8 42.5 41.8 42.5	.856 .861 .886 .834 .884	39.7 52.6 33.0 35.2 33.0	3.349 3,339 3,313 3.866 3.309	126 127 128 129 130
7420 7400 6950 6669 5488	7582 7510 7501 6809 5530	,951 ,948 ,941 ,854 ,693	48.4 50.5 43.4 24.9	155.5 155.5 155.4 117.1 58.1	5.963 8.888 5.698 4.637 2.881	.820 .818 .838 .831 .707	.008 .008 .007 .004 .006	.044 .040 .059 .049 .065	,963 ,960 ,972 1.005	4.17 4.06 3.76 2.94 1.51	5.88 2.50 6.39 4.41 1.98	.54 .63 .60 .51	4509 4292 4269 4207 3928	42.1 42.4 42.1 43.4 40.1	.873 .854 .859 .861 .868	33.0 33.0 52,9 31.9 87.8	3.993 3.351 3.348 3.263 2,701	131 132 135 134 138
7964 7814 7505 7930 7905	8820 8241 8115 8087 8054	1,081 1,085 1,018 1,014 1,010	84.8 34.3 33.9 51.5	145.7 141.8 142.4 159.8 157.4	7,270 6,756 6,740 6,593 6,871	.748 .775 .785 .782 .782	.005 .005 .006 .006	.042 .041 .042 .045 .045	.968 .968 .961 .975	3.52 3.01 2.92 3.05 5.11	4.83 4.38 48.3 4.42 4.40	.36 .36 .38 .38	4556 4515 4501 4517 4294	42.6 42.5 42.7 42.2	.863 .840 .821 .868 .869	52.4 52.4 52.2 52.7 52.5	3,350 3,350 3,359 5,301 3,296	136 137 138 139 140
7785 7775 7420 6924 6674	7949 7982 7550 7494 8800	.997 .963 .948 .940 .863	81,6 81,3 89,3 81,2 85,7	140.7 139.4 139.0 131.6 113.9	6.521 6.383 5.989 5,905 4.650	.797 .801 .824 .825 .621	,006 ,006 ,006 ,004 ,003	.041 .045 .040 .043 .051	.985 .958 .977 .969 .990	2.82 2.87 R.59 2.40 1.85	4.19 3.67 3.41 2.69	,39 ,39 ,32 ,37 ,31	4295 4508 4292 4237 4163	42.8 42.9 42.0 41.8 42.6	.861 .855 .855 .832 .845	32.6 52.4 52.1 32.1 51.7	5,526 3,297 5,330 5,348 5,275	141 142 143 144 145
5472 7970 7771 7449 6547	5558 8144 7841 7806 5684	.697 1.098 .996 .964 .838	17.4 19.1 19.0 18.3 14.8	75,5 142.4 137.7 129,7 104.2	2.594 7.022 8.604 6.014 4.410	.578 .785 .781 .797 .800	.007 .006 .001 .007 .006	.054 .044 .052 .044 .047	.877 .935 .919 .920	1.89 1.85 1.69 1.14	1.45 2.75 2.59 2.33 1.51	.19 .19 .20	3867 4262 4269 4227 4124	48.0 41.8 42.0 41.7 40.7	.885 .861 .883 .857 .855	27.4 33.0 33.0 32.0 31.0	2,688 3,369 3,360 3,331 3,265	148 147 148 149 150
5786 7938 7714 7369 8915 6348	5900 6104 7883 7583 7060 6568	.740 1.016 .989 .943 .686	10.5 14.3 14.1 13.8 13.8 10.5	75.8 138.8 135.1 125.9 119.8 98.3	2,976 6,782 6,397 5,767 5,113 4,113	.704 .760 .765 .771 .783 .776	.009 .002 .003 .005 .006	.046 .050 .041 .040 .041	.895 .935 .916 .935 .929 .872	1.47 1.41 1.21 1.08	2,15 2,02 1,83 1,68 1,16	.14 .19 .19 .19 .21	3899 4176 4149 4118 4202 3885	41.5 42.4 41.6 45.2 42.4 43.5	,858 ,882 ,863 ,888 ,837	32.0 32.0 31.0 33.0	2,978 3,254 3,277 3,213 3,164 2,890	151 152 153 154 156 156

TABLE I. - Continued. PERFORMANCE DATA

(a) Continued. Inlet guide vanes open.

Run	Com- pressor Reynolds number index, 51	exhaust	Flight Mach mader, No	Equivalent ambient air static temperature, to, and a static temperature.	Engine- inlet total temper- ature, T1'	Engine- inlet total pressure, Pl' 1b sq ft abs	Compressor- inlet total pressure, P2, 1b sq ft abs	Compressor- outlet total tempera- ture, 73'	Compressor- outlet total pressure, P3, 1b	Combustor- inlet total pressura, P4, ib sq ft abs	Turbine- inlet total temper- ature, T5, R	Turbine- inlet total pressure, P5, 10 sq ft abs	Turbine- outlet total tempera- ture, Tg, OR	furbine- outlet total pressure, Pe, lb	Tail- pipe total temper- ature, 7, oR	Tail- pipe total pressure P, 1b sq ft abs
							Exhaust-	ozzle area,	5.588 sq ft		L	L	L	I	· · · · · · · · · · · · · · · · · · ·	
157 159 159 160 161	1.051 .941 .959 .970 1.000	2053 2051 2060 2057 2057	0 0 0	512 511 509 508 502	503 503 501 501 500	1933 1937 1957 1976 2024	1891 1911 1935 1958 2017	938 923 891 627 734	12578 11852 10992 8010 5648	12287 11750 10684 8974 5615	1573 1525 1427 1280 1223	11775 11274 10448 6533 5352	1195 1145 1062 958 1016	5171 2969 2825 2514 2259	1174 1138 1064 945 999	2988 2780 2664 2447 2221
162 163 164 165 166	.992 .985 .899 .899	2057 2051 1191 1190 1178	0 0 .793 .795 .812	504 505 442 441 442	502 504 497 497 500	2025 2037 1802 1804 1816	2017 2036 1772 1776 1793	735 666 927 914 883	5628 3974 11491 11191 10370	5802 3984 11415 11121 10500	1223 1263 1550 1500 1385	5335 3794 10933 10651 9859	1019 1128 1171 1150 1031	2235 2150 2821 2753 2544	998 1114 1168 1120 1026	2215 2140 2418 2580 2178
167 168 169 170 171	.920 .880 .911 .653	1255 1201 1193 794 788	.786 .792 .798 .803	450 451 438 415 416	505 507 494 488 469	1886 1815 1816 1215 1205	2049 1797 1907 1194 1185	887 827 705 895 884	9637 8001 5058 7845 7730	9568 7969 5027 7884 7681	1385 1170 863 1557 1503	9138 7631 4721 7670 7548	1050 851 841 1181 1135	2581 1942 1432 1837 1904	1025 853 649 1167 1322	2215 1756 1392 1694 1634
172 175 174 175 176	.835 .807 .802 .594 .585	786 786 786 484 483	.800 .800 .800 1.232 1.239	421 455 440 385 584	475 488 496 499 502	1198 1197 1213 1208 1205	1181 1185 1209 1196 1192	855 797 691 813 813	7032 5529 2652 5403 5319	8988 5515 2852 5381 5299	1373 1153 867 1160 1158	5677 5228 2681 5087 5009	1026 849 867 855 850	1725 1349 908 1314 1285	1022 852 675 856 855	1478 1221 891 1140 1091
177 178 179 180 181	.579 .429 .431 .432 .437	492 487 491 492 488	1.223 .907 .804 .604	389 395 395 395 390	508 446 448 448 442	1201 747 751 753 754	1194 732 736 739 741	744 861 862 828 762	3897 5198 5041 4692 3913	3868 5162 5014 4661 3896	975 1585 1520 1385 1177	3444 4943 4799 4461 3710	1208 1208 1152 1036 864	879 1274 1238 1141 947	840 1193 1139 1031 866	780 1093 1062 979 821
182 185 184 185 186	.434 .958 .979 .278	491 293 332 333 333	.804 .821 .780 .777 .781	391 396 406 405 406	442 449 485 484 454	751 456 496 498 498	747 435 468 490 492	654 	2368	2353 	830	2208	612 1216 1217 1171 1062	82) 774 814 784 758	821 1201 1202 1158 1056	899 664 704 677 635
187 188 188 190 191	.265 .258 .188 .189	504 291 254 249 250	.802 .830 .705 .719 .719	394 386 703 728 720	445 439 468 489 470	484 457 351 351 348	441 447 349 348 346						877 641 1295 1830 1121	576 401 544 525 482	879 850 1273 1212 1109	506 586 477 481 425
192 193 194 196 196 196	.189 .189 .168 ,155 .153	255 249 259 254 254 253	.693 .719 .399 .368 .377	706 722 417 404 405 398	472 472 457 485 484 483	352 348 289 263 280 280	349 346 289 380 278 278						905 793 1355 1252 1098	405 453 425 401 362 31.6	903 797 1329 1214 1086	372 411 383 367 333 506

TABLE I. - Continued. PERFORMANCE DATA

(a) Concluded. Inlet guide vanes open.

Engine speed, N, rpm	Corrected engine speed, H -/81	Compressor- inlet tip Mach number, Mg	air flow,	Corrected air flow,	Com- pressor pressure ratio, P ₃ /P ₁	Com- pressor effi- oiency, n	Compressor- discharge pressure- loss ratio, (P3-P4)/P5	Combustor pressure- loss ratio, P4-P5 F4	Combus- tion effi- ciency, Pb	Combus- tion param- eter, P4T5 Vb	Combus- tion param- etar, Wa,1 ¹⁷ 7*	Turbine Reynolds number index, 55 -5-/85	Corrected turbine speed, N Ves rpm	Cor- rected turbine gas flow, Wg,57/95 5 1b/sec	offi- alenay, N _t	Corrected turbine enthelpy drop, AH,/0g, Btu lb-sec	Turbine pres- sure ratio, P ₅ /P ₈	Run
							Exhaust	:-nossle ar	ea, 3.6	38 sq ft								
7949 7779 7411 6667 5489	6074 7900 7543 6766 5592	1.012 .991 .948 .851 .701	135,8 131.7 127.4 110.4 70,7	144.2 141.6 155.3 116.1 72.5	6.404 6.119 5.617 4.560 2.790	0.800 .802 .815 .850 .725	0,009 ,009 ,010 ,004 ,005	0.040 .041 .040 .049 .047	0,949 ,988 ,988 ,987 ,983	11.4 10.6 9.41 7.38 4.51	15.7 15.0 13.6 10.4 7.06	1.48 1.46 1.44 1.40	4610 4686 4513 4507 3599	42.1 42.5 42.8 42.7 43.0	0.880 .860 .874 .893 .878	35.9 35.8 35.3 33.4 24.8	3.713 3.796 3.887 3.384 2.391	157 158 189 160 161
5492 4583 7926 7790 7424	5564 4661 8099 7960 7564	.700 .584 1.016 .998 .949	72.5 48.2 126.2 124.5 119.6	75.6 49.4 145.0 142.7 156.7	2.779 1.951 8.577 8.205 5.710	.729 .654 .798 .808 .836	.008 .003 .007 .007	.048 .043 .042 .042 .043	.979 .981 .981 .965 .966	4.44 5.50 10.4 10.1 8.97	7.14 5.37 14.6 15.9 12.3	.90 .62 1.39 1.41 1.44	5601 2965 4627 4525 4882	45.6 42.1 42.4 42.1 41.9	.683 .633 .852 .852 .859	24.4 18.4 35.0 35.0 35.8	2.587 1.765 5.876 5.868 5.876	162 163 164 165 166
7411 6701 5504 7926 7797	7513 6780 5642 8347 8202	.942 .850 .708 1.047 1.029	122.7 102.4 75.9 69.0 86.2	136.0 118.0 64.1 147.4 144.2	5.112 4.408 2.787 8.550 8.428	.778 .829 .796 .773 .788	.007 .004 .008 .008 .008	.045 .065 .061 .040 .048	.995 1.001 1.000 .998 .974	7.55 6.26 5.46 6.92 6.79	12.6 8.75 4.79 10.4 9.60	1.33 1.34 1.18 .95	4580 4519 4290 4619 4625	46.4 43.1 42.1 45.3 42.4	.912 .877 .871 .852 .854	35.7 35.7 31.4 36 38	3.541 3.877 3.297 5.837 5.860	167 168 169 170 171
7407 6653 5328 6687 6653	7742 8861 5450 5819 6765	.971 .860 .683 .885	83.0 70.7 49.2 68.8 67.5	140.3 121.2 72.0 118.2 118.5	5.870 4.619 2.351 4.478 4.414	,817 .863 .702 .864 .848	.009 .003 .007 .004 .004	.049 .052 .060 .085 .055	.964 .977 .955 1.038 .994	5.78 4.25 1.89 4.26 4.21	8.49 5.03 2.84 5.89 5.75	.97 .95 .88 .91 .90	4592 4520 4143 4530 4511	42.8 42.8 42.8 42.8	.848 .844 .858 .850 .849	35 38 29 35.3 35.0	5.874 5.878 2.951 5.871 5.905	172 173 174 175 176
5843 7855 7795 7420 8888	5918 8583 8409 8004 7245	,742 1,076 1,064 1,004 ,909	52.4 55.7 55.5 54.3 49.7	91,2 146.3 145.0 141.8 128.7	3.078 6.958 6.712 6.231 5.190	.802 .754 .769 .797 .897	.008 .007 .005 .007 .004	.061 .042 .043 .043	.913 .990 .982 .991 1,004	2,80 4.84 4.58 4.05 5.09	5.35 6.65 6.32 5.60 4.50	.84 .82 .82 .85 .66	4522 4596 4599 4593 4498	41.5 41.9 42.1 42.1 42.8	.845 .836 .842 .842 .851	58.0 35 38 36 36,4	3.918 3.880 3.876 3.909 3.817	177 178 178 180 181
5492 7958 7958 7778 7384	5951 8654 8499 8314 7895	.746 1.073 1.068 1.045	35.0	90.9	5.153	.811	.008	.082	388	1.80	2.17		4562	41.8	.859	32.7	3.555	182 183 184 185 186
6685 5598 7958 7786 7386	7219 8067 8380 8191 7782	.905 ,765 1,051 1.027 .975							~~~~			788					##### ##### ##### #####	187 188 189 190 191
6670 6782 6008 7640 7197 6506	6998 6556 8440 8071 7612 8888	,877 ,822 1,058 1,012 ,955 ,864				*****												192 193 194 195 196 196

TABLE I. - Continued. PERFORMANCE DATA

(b) Inlet guide vanes closed.

Run	Com- pressor Reynolds number index, 51 -1-1	Altitude- scheust pressure, p ₀ , lb/sq ft	Flight Mach mumber, Mo	Equivalent ambient air static temperature, to, PR	Engine- inlet total temper- ature, T ₁ , o _R	Engine- inlet total pressure, P1, 1b aq ft abs	Compressor- inlet total pressure, P ₂ , lb	Compressor- outlet total temper- ature, T ₃ , o _R	Compressor- outlet total pressure, P3' 1b sq ft abs	Combustor- inlet total pressure, P ₄ , lb	Turbine- inlet total temper- ature, To oR	Turbine- inlet total pressure, P5: lb sq ft abs	Turbine- cutlet total tempera- ture, T6, aR	Turbine- outlet total pressure, Ps, 1b mq ft abs	Tail- pipe total tomper- ature, T7' oR	Tail- pipe total pressure, P7, 1b sq ft abs
L				•			Exhaus	t-possle ar	a, 2.388 sq	ft						
193456	0.950 .949 .949 .950 .931	2048 2038 2045 2038 2034 1164	0 0 0 0 0,821	521 .821 522 521 520 449	517 518 520 520 519 509	1997 2000 2020 2028 2027 1811	1986 1993 2018 2028 2027 1801	845 772 702 658 614 822	8285 6575 4848 3627 3135 7167	8226 6555 4842 3516 5111 7079	1507 1340 1240 1263 1253 1347	7892 6263 4616 3379 3023 6799	1252 1114 1102 1151 1184 1064	2972 2632 2380 2212 2161 2285	1246 1108 1070 1135 1170 1056	2899 2588 2357 2202 2153 2228
7 8 9 10 11 12	.861 .860 .569 .358 .362 .360	1166 1153 800 489 496 497	.613 .819 .796 .794 .803 .797	450 450 458 455 455 455	809 510 514 812 514 513	1800 1789 789 750 757 767	1792 1782 785 746 754 783	783 707 837 793 754 712	6355 4864 3069 2675 2294 1879	8584 4542 3038 2867 9281 1873	1203 967 1400 1243 1107 990	6015 4275 2912 2535 2160 1768	958 765 1096 978 875 788	2043 1636 964 866 769 689	938 769 1102 972 873 793	2000 1597 958 845 752 875
							Exhaus	t-nossle ar	aa, 2.514 sq	ſt						
15 14 15 16 17	0.948 .950 .952 .953	2058 2069 2061 2058 2051	00000	521 521 521 521 521 519	517 517 517 517 517	1995 2000 2005 2008 2027	1981 2189 1990 1998 2022	907 894 865 814 701	9295 9147 8691 7717 4901	9225 9070 8649 7696 4893	1767 1727 1820 1450 1250	8858 8708 8306 7384 4852	1452 1387 1303 1182 1105	3162 3136 3045 2840 2388	1421 1365 1304 1185 1078	3088 3038 2968 2788 2371
18 20 21 22	.400 .399 .398 .387	491 494 494 498	0.802 .802 .800 .800	418 420 423 429 439	472 474 477 484 495	750 754 765 768 757	745 748 748 751 758	858 845 614 772 670	3805 3523 3285 2803 1757	3587 3504 3264 2895 1726	1615 1850 1450 1243 917	3436 3359 3129 2764 1623	1280 1280 1122 976 759	1104 1079 1010 914 651	1265 1281 1122 972 742	1075 1050 984 894 638
		·			l	لـحســـا	Exheus	t-nozele ar	a, 2.694 sq	ſt		L				
25 24 25 25 27	0.432 .432 .432 .432 .432	489 499 495 499 481	0.808 .793 .798 .790 .804	394 398 396 396 396	448 448 448 448 447	751 755 761 758 736	746 750 746 749 754	829 810 776 721 647	3644 3511 5425 2911 2174	5617 5485 5402 2900 2172	1515 1450 1334 1147 910	3465 5338 3261 2761 2048	1152 1129 1027 872 704	1045 1007 965 862 706	1170 1119 1025 878 711	1012 975 934 859 890
							Exhaus	t-nossle ar	14, 3.688 sq	ſŧ						
28 29 30 31 32 33	0.954 .960 .969 .964 .972 .407	2075 2080 2074 2077 2070 487	0 0 0 0 0 0,809	522 521 520 518 516 412	518 517 516 515 514 488	2021 2027 2022 2022 2030 2039 749	2005 2012 2008 2020 2032 742	888 872 944 798 753 834	8605 8450 8092 7273 5825 3541	8541 8413 8035 7244 5813 3315	1455 1420 1340 1240 1150 1533	8166 8051 7678 6897 5510 3156	1158 1106 1049 980 951 990	2475 2454 2418 2357 2250 798	1120 1089 1035 968 941 986	2409 2398 2370 2322 2233 723
34 35 36 37 38	.399 .416 .406 .408 .407	482 483 491 484 489	.815 .815 .812 .808 .813	415 405 418 414 419	470 457 487 468 467	745 747 757 759 765	740 742 758 754 751	820 775 724 726 656	3250 31,03 2632 2643 2266	3232 3080 2621 2638 2257	1280 1180 970 970 857	3083 2944 2477 2487 2123	944 850 711 709 641	771 742 657 859 607	943 850 717 715 849	704 685 627 630 587

TABLE I. - Concluded. PERFORMANCE DATA

(b) Concluded. Inlet guide vanes closed.

Figine speed, N, rpm	Cor- rected engine apeed, N -/61 rpm	Compressor- inlet tip Mach number, M	Engine air flow, Wa,1' lb/sec	Air flow,	Com- pressor pressure ratio, P5/P1	Com- pressor effi- diency, n	Compressor- discharge pressure- loss ratio, (P3-P4)/P3	Combustor pressure- loss ratio, P4-P5 P4	Combus- tion effi- ciency, n _b	Combus- tion param- eter, P4T3 x b	Combus- tion param- eter, Wa,1 ^T 7*	Turbine Reynolds number index, 65	Cor- rected turbine speed, N -/05 rpm	Cor- rected turbine gas flow, Wg,5-\sqrt{85} 85 lb/sec	offi- ciency, $\eta_{\rm t}$	Corrected turbine enthalpy drop, AH, /0g, Btu lb-sec	Turbine pres- sure ratio, P ₅ /P ₆	Run
							Extra un t-	nogale are	a, 2.38	3 sqft								
7091 6019 5016 4061 3604 7063	7104 6025 5010 4077 3604 7152	0.891 .756 .828 .511 .452 .897	91.7 77.4 59.5 40.3 53.5 84.9	97.0 81.8 82.4 42.1 35.0 98.3	4.149 5.288 2.400 1.739 1.547 3.952	0.785 .822 .813 .754 .726 .778	0.007 .003 .001 .003 .006 .011	0.041 .045 .047 .059 .028	0.980 .968 1.012 .930 .918	7.47 5.82 3.99 3.10 2.92 5.97	11.4 8.58 6.36 4.58 3.92 8,96	.1.02 .94 .78 .62 .50 1.01	4201 5812 5295 2659 2557 4474	42.1 42.0 42.3 39.4 35.4 42.8	0.777 .846 .848 .958 .783	28.1 24.9 19.0 14.4 9.8 30.7	2.655 2.380 1.839 1.528 1.399 2.975	125488
6538 5502 7087 6540 5985 5447	6602 5650 7121 6585 6014 5479	.828 .895 .893 .826 .754 .867	76,7 64,2 35,3 33,2 29,8 26,5	91.7 75,5 97.8 92.9 82.8 71.Q	3,831 2,881 4,030 3,687 3,030 2,489	.802 .791 .772 .792 .795 .765	,005 ,006 ,009 ,003 ,006 ,003	.049 .059 .040 .050 .053 .057	.986 .980 .984 .951 1.008	5.14 3.25 2.84 2.17 1.77 1.39	7.36 4.91 3.88 3.22 2.60 2.09	1.03 .83 .42 .42 .41 .38	4358 4084 4352 4291 4145 3979	42.1 42.9 42.1 42.9 42.4 41.8	.868 .875 .887 .869 .858	29.8 26.2 30.4 29.7 28.5 28.1	2,944 2,815 2,959 2,927 2,809 2,585	7 8 9 10 11 12
_							Exhaust-	nossle are	a, 2.51	sq ft								
7945 7782 7418 6670 5032	7950 7797 7429 8683 5042	0.998 .978 .932 .838 .632	94.8 94.3 93.2 87.5 57.5	100,4 99,6 98,2 92,1 59,9	4.658 4.574 4.335 3.843 2.418	0.725 .740 .768 .810 .804	0.008 .005 .003	0,040 040 040 041 049	0,974 .978 .986 .994 1.048	9,08 8,82 8,02 6,85 4,21	13.5 13.1 12.2 10.4 6.20	0.98 .98 1.00 1.02 .76	4554 4514 4240 4024 5295	42.3 42.2 42.3 42.1 40.7	0.860 .878 .863 .632 .844	28.6 28.5 27.8 28.2 19.3	2,801 2,777 2,728 2,600 1,948	13 14 15 16 17
7945 7797 7415 6735 6146	8332 8188 7734 8974 5289	1.045 1.023 .970 .875 .661	38.4 38.5 37.1 35.8 24.0	103.4 103.2 99.9 98.2 55.6	4.607 4.672 4.363 3.840 2.295	.689 .708 .757 .783 .753	.005 .004 .006 .005 .007	.042 .027 .041 .048 .059	.980 .993 .975 .987 .864	3.39 3.25 2.91 2.38 1.25	4.86 4.70 4.15 3.46 1.78	.42 .43 .44 .45 .38	4550 4555 4507 4584 5698	42,1 28,9 41,7 42,2 41,2	.660 .632 .642 .648 .848	50.9 50.7 50.5 29.6 24.7	5.112 4.880 5.098 5.024 2.495	53 57 50 19 18
							Exhaust	-nossle are	A, 2.694	l sq ft								
7949 7780 7409 6670 5532	8575 8393 7992 7195 5961	1,078 1,052 1,002 .902 .746	89.5 39.0 40.2 37.0 30.7	105,2 101,4 105,0 98,3 81,8	4.852 4.650 4.558 5.888 2.954	.661 .674 .732 .763 .809	.007 .008 .008 .004	.049 .049 .049 .049 .072	.977 .965 .979 .992 .948	3.35 5.15 2.91 2.30 1.56	4.62 4.57 4.12 5.24 2.18	.45 .48 .51 .50	4693 4705 4659 4544 4207	41.4 41.5 41.8 42.0 52.8	.855 .849 .835 .869	32.6 32.3 31.8 31.1 28.3	3,316 3,315 3,380 3,203 2,269	25 24 25 26 27
							Exhaust-	nossle are	a, 3.680	sq ft								
7945 7777 4403 6665 5723 7964	7951 7792 7425 6689 5751 8404	0.997 .977 .931 .839 .721 1.054	98.4 98.0 98.2 90.2 75.5 59.5	102.9 102.1 100.3 93.6 77.8 105.1	4.258 4.174 4.002 5.585 2.857 4.461 4.362	0,715 .727 .760 .797 .817 .872	0,007 ,006 ,007 ,004 ,002 ,008	0.044 .045 .044 .048 .082 .047	1.002 .986 .995 .977 .985 .979	7.51 7.31 6.79 5.69 4.54 2.83	11.0 10.7 9.95 8.73 7.09 5.87	1.12 1.15 1.14 1.15 1.00 .48	4787 4743 4639 4340 3893 5063	42.8 42.7 42.6 42.8 42.9 42.3	0.857 .870 .861 .875 .847 .846	52.7 52.3 51.6 29.3 24.7 56.5	5.299 5.261 5.176 2.927 2.438 5.967	28 29 30 31 32 33
7424 8598 6834 5937	7912 6956 6881 6259	.992 .872 .863 .785	39.0 36.2 35.5 35.4	103.6 96,1 96,1 88,8	4.154 3.477 5.482 5.001	.719 .777 .774 .777	.007 .004 .002 .004	.044 .055 .057 .059	.968 .922 .969 .938	2.48 1.92 1.94 1.54	3.51 2.60 2.60 2.17	55 54 55 55	8030 4862 4818 4620	41.8 41.9 41.9 42.5	.853 .844 .850 .849	35.6 34.1 34.2 32.7	3.988 3.771 3.774 3.488	35 36 37 38

TABLE II. - PERFORMANCE DATA OBTAINED AFTER ENGINE OVERHAUL WITH COLD INLET-AIR TEMPERATURES
[Inlet guide vanes open.]

Run	Compressor Reynolds number index, 51 1/81	alfitude- exhaust pressure, Po- lb/sq ft	Flight Mach number, M _O	Equivalent ablient air statio temperature, to, or R	Engine- inlet total temper- ature, T ₁ , o _R	Engine- inlet total pressure, P1, lb sq ft abs	Compressor- outlet total tempera- ture, Ts, or	Compressor— cutlet total pressure, P3' 1b sq Ft abs	Turbine- inlet total temper- ature, Tg, og	Turbine- inlet total pressure, Ps, lb sq ft abs	Turbine- outlet totel tempera- ture, To of	Turbine- outlet total pressure, Pg' 1b aq ft abs	Tail- pipe total temper- ature, T ₇ , R	Tail- pipe total pressure, P7: 1b sq Tt abs
						Exhaust	-nozzle are	a, 2.388 sq	rt	E. E. P. S.	Landa i	Maria de la composición della		·- =
10346	0.470 .475 .453 .480 .442	475 478 484 481 481	0.821 .819 .813 .819 .820	356 366 383 363 385	406 415 434 412 437	759 742 747 747 748	865 873 891 848 874	6163 8046 5920 5730	2010 2018 1987 	5919 5810 5872 5501	1610 1612 1621 1533 1547	2046 2009 1947 1880	1615 1617 1600 1529	1991 1955 1909 1837
6 7 8 9 10	.489 .436 .489 .488 .439	485 482 483 480 492	.813 .816 .824 .817 .799	560 586 357 562 590	408 440 406 410 440	749 745 754 744 749	827 847 802 776 772	5347 5580 5067 4136	1800 1753 1617 1455	5138 5390 4867 3951	1466 1442 1392 1263 1148	1754 1845 1666 1356	1437 1400 1205 1154	1716 1796 1626 1322
11 12 15 14 15	.418 .340 .344 .334	478 291 298 303 283	.809 .826 .819 .803 .813	399 326 324 322 323	451 373 367 364 368	735 455 461 463 482	667 829 805 781 764	1961 4032 3926 3968 3617	1083 2007 1920 1837 1737	1860 3873 3781 3814 3487	858 1618 1548 1472 1586	736 1329 1299 1262 1186	871 1607 1540 1466 1386	719 1295 1269 1234 1158
16 17 18 19 20	.341 .267 .261 .276 .274	298 297 287 299 311	.804 .797 .822 .809 .792	350 391 388 388 393	578 441 442 459 442	456 451 447 460 470	730 899 890 842 784	3575 3606 5547 3243 2597	1587 2017 1975 1780 1497	3262 3467 3411 3104 2474	1262 1593 1605 1438 1192	1106 1162 1165 1056 837	1266 1521 1580 1422 1169	1076 1153 1159 1031 617
21 22 25 24 25	.271 .206 .205 .215 .212	508 181 182 194 190	.793 .829 .820 .794 .806	396 337 338 340 339	446 383 384 383 383	466 284 283 294 291	645 843 906 788 747	1088 2467 2540 2267 2075	1070 2037 1890 1797 1620	1028 2369 2252 2184 2001	859 1651 1539 1460 1310	422 814 769 737 681	872 1640 1520 1437 1294	413 791 752 720 665
26 27 28 29 30	.165 .166 .156 .160	175 177 178 186 194	.841 .837 .832 .802 .784	387 389 394 413 411	442 444 448 464 461	278 280 260 284 291	911 690 860 799 701	2280 2192 2008 1482 773	2067 1975 1633 1510 1227	2169 2108 1930 1426 740	1690 1606 1484 1218 978	758 715 652 485 288	1660 1584 1485 1209 998	722 898 656 470 280
51 52 53 54 55 56 57	.161 .156 .160 .126 .127 .135 .127	197 189 197 192 188 198	.409 .417 .409 .438 .486 .438	570 369 570 425 424 429 432	382 382 382 441 442 445 448	221 215 221 218 218 226 225	852 785 806 801 865 786 712	1788 1844 1562 1661 1549 1176 601	1990 1797 1737 2037 1883 1550 1810	1708 1593 1508 1596 1469 1138 572	1653 1486 1372 1666 1544 1274 1251	679 545 516 545 504 398 247	1597 1438 1558 1639 1512 1257 1275	563 527 504 531 490 567 243
						Exhaust	-nozzle area	, 2.514 sq f	t	 ##1	F			
38 39 40 41 42	0.180 .177 .178 .178 .178	185 179 183 184 185	0.800 .823 .808 .802 .804	369 366 367 368 367	416 415 415 415 414	282 279 281 261 280	866 855 814 743 871	2269 2254 1975 1657 1187	1897 1880 1697 1385 1140	2209 2132 1891 1564 1119	1487 1460 1328 1111 904	707 677 542 510 371	1502 1469 1332 1082 685	684 664 517 490 359
43 44 45 46 47	.154 .168 .168 .141	190 186 201 197 198	.792 .799 .756 .768 .415	419 402 408 599	471 446 454 415	267 263 286 291 223	931 856 800 875	2175 2082 1889 1545	1990 1757 1500 1953	2092 1995 1803 1484	1586 1572 1419 1181 1554	686 659 589 489	1583 1586 1191 1548	666 639 571 474
48 49 50 51	.142 .140 .137 .134	198 193 188 186	.451 .444 .450 .453	398 397 397 399	415 415 415 415	225 221 216 214	852 819 781 897	1709 1599 1381 1031	1867 1740 1523 1297	1653 1558 1346 1004	1517 1394 1250 1041	532 505 440 339	1482 1579 1211 1029	507 456 424 327
50	0.180	174	0.845	125	405			, 2.694 sq f		2211	340%	070	1400	
52 53 54 56 56 57	.179 .180 .172 .170 .143	175 180 173 180 198	.838 .824 .831 .810 .408	355 356 361 364 576 392	406 410 414 425 405	277 277 261 272 277 222	851 833 796 738 644 854	2305 2212 2035 1684 856 1741	1817 1737 1579 1337 995 1825	2211 2127 1945 1590 625 1666	1405 1350 1228 1044 795 1428	676 646 591 487 216 502	1422 1357 1229 1036 779 1426	651 622 564 457 207 480

TABLE II. - Concluded. PERFORMANCE DATA OBTAINED AFTER ENGINE OVERHAUL WITH COLD INLET-AIR TEMPERATURES
[Inlet guide vanes open.]

Engine speed, N, rpm	Corrected engine speed, H	Compressor- inlet tip Mach mamber, K _e	Engine air flow, Wa,1, lb/sec	Corrected air flow, $\sqrt{\theta_1}$, $\theta_$	Com- pressor pressure ratio, P _S /P ₁	Com- pressor eff1- clenay, n _o	Compressor- discharge and combustor pressure- loss ratio, \[\frac{P_5-P_5}{T_3} \]	Combus- tion effi- clency,	Commus- tion param- ster, P4T3 Vb	Combus- tion param- eter, Wa,1 ^T 7*	Turbine Reynolds number index, 55	Cor- rected turbine speed, g -/05 rpm	Corrected turbine gas flow, ws.5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5,5-/85,5	Turbine effi- ciency, [¶] t	Corrected turbine enthalpy drop, AH,/85, Btu lb-wec	Purbine pres- sure ratio, P ₅ /P ₅	Aun
<u> </u>	•						Ixhaust-nozz	le area,	2.388 m	q ft							
7975 7966 7943 /763 7748	9016 8900 8587 8713 8444	1.131 1.116 1.089 1.093 1.058	59.7 58.8 57.3 59.6 56.8	151.1 149.8 148.4 150.4 147.4	8.340 8.148 7.926 7.660	0.734 .740 .761 .785	0.040 .039 .042	0.933 .982 .981 1.025	6.44 6.30 6.19 5.65	9.84 9.50 9.17 9.18 8.68	0.56 -55 -55 -56	4106 4091 4115 4089	42.8 43.0 42.6 42.6	0.862 .874 .850	30 29 29 29 30	2.695 2.892 2.915 2.926	1 2 3 4 6
7589 7424 7363 6992 6:47	8580 8063 8324 7867 7110	1.073 1.011 1.044 .987 .892	58.3 54.8 57.9 55.4 47.1	148.1 143.3 143.6 140.1 122.6	7.177 7.401 6.810 5.522	.814 .789 .815 .834	.040 .034 .040 .045	1.001 .995 1.009 .998 .971	5.26 5.45 4.69 3.67	8.56 7.87 8.10 7.12 5.44	.56 .59 .56	4054 4053 4002 3945	42.6 42.3 42.9 42.5	.859 .854 .857 .851	25.55	2.926 2.921 2.921 2.914	6 7 8 9 10
5267 7941 7773 7:-89 7362	5650 9387 9244 9063 8742	.709 1.175 1.159 1.137 1.096	24.8 38.2 38.8 38.7 37.5	66.4 150.8 149.8 147.9 147.8	2.686 5.862 5.516 6.570 5.002	.676 .706 .706 .739 .754	.052 .038 .037 .039 .036	.914 .961 .979 .972 .964	1.57 4.30 4.02 4.12 3.64	2.16 6.15 5.98 5.57 5.20	.36 .37 .38 .40 .39	3686 4097 4092 4082 4069	40.5 41.9 42.5 41.0 42.2	.875 .888 .858 .840 .852	58 58 58 58 58	2.527 2.916 2.910 3.022 2.940	11 12 13 14 15
6998 7947 7835 7365 6619	-8254 8621 8490 8006 7173	1.035 1.081 1.065 1.004 .899	36.1 33.6 33.6 33.0 29.0	142.0 146.3 146.9 139.7 120.5	7.401 7.996 7.935 7.050 5.526	.806 .775 .790 .809 .812	.034 .038 .038 .043 .047	.945 .956 .935 .856 .960	3.19 3.89 3.79 3.22 2.36	4.57 5.48 5.31 4.70 3.45	.40 .33 .33 .34 .33	4040 4085 4070 4025 3938	41.5 41.5 42.2 42.4	.838 .853 .867 .862 .840	52 53 53 53 56	2.944 2.933 2.928 2.939 2.966	16 17 18 19 20
7877 7868 7406 6935	5435 9169 8844 8619 8072	1.150 1.109 1.081 1.012	14.0 22.9 23.2 22.9 22.5	58.0 148.6 149.4 141.4 139.3	2.292 8.687 6.269 7.711 7.151	.598 .708 .748 .749 .793	.038 .040 .038 .037 .036	.819 .932 .937 .947 .937	.82 2.69 2.39 2.270 1.96	1.22 3.75 3.53 3.29 2.88	.20 .22 .25 .25 .24	3548 4032 4037 4029 3967	41.3 41.3 43.5 41.9 42.1	.857 .836 .843 .845 .839	29 29 29 29	2.436 2.910 2.929 2.963 2.939	21 22 25 24 25
7890 7748 7358 6142 1 502	8858 8377 7919 6919 5838	1.085 1.050 .893 .868 .732	20.7 20.5 19.3 15.7 8.9	145.1 141.7 135.7 110.3 60.8	8.201 7.829 7.171 5.218 2.656	.771 .791 .816 .632 .821	.040 .038 .039 .038 .045	.907 .911 .903 .892 .718	2.55 2.40 2.11 1.42 1.68	3.43 3.21 2.83 1.89 .89	.20 .20 .20 .20	4063 4025 3963 3870 3634	40.7 40.5 40.4 38.9 39.2	.853 .853 .846 .820 .837	30 29 28 28 25	2.966 2.945 2.960 2.940 2.569	26 27 28 29 30
7651 7256 6986 7614 7435 6036 5463	8916 8458 8145 8477 8057 7058 5869	1.116 1.061 1.021 1.063 1.010 _885 _736	17.1 18.3 16.1 15.8 14.9 12.5 5.7	140.4 138.8 132.6 140.9 133.4 108.4 49.9	7.991 7.718 7.068 7.584 7.106 5.204 2.695	-986 -754 -671 -747 -760 -784 -656	.033 .051 .035 .039 .039 .032 .048	.905 .932 .976 .935 .891 .901 .719	1.85 1.53 1.78 1.63 1.12 .65	2.73 2.34 2.19 2.59 2.25 2.45 .72	.18 .19 .17 .15 .15 .16	3946 3946 5862 3998 3952 3820 3229	45.6 42.0 43.0 42.4 41.0 40.5 36.2	.856 .851 .926 .854 .843 .799 .812	29 29 31 29 29 27 27	2.950 2.933 2.911 2.928 2.954 2.860 2.316	31 32 33 34 35 36 37
<u> </u>	_						zhaust-nozz	le area,	2.514 5	ı ft							
7924 7835 7405 6,49 5762	8651 8762 8279 7524 6440	1.110 1.099 1.058 .918 .806	21.9 22.0 21.5 18.1 15.2	146.9 148.5 144.4 122.1 102.5	8.117 8.007 7.026 5.897 4.239	0.753 .762 .775 .634 .823	0.035 .046 .043 .056 .067	0.902 .911 .951 .876 .831	2.42 2.30 1.84 1.53	3.28 3.23 2.66 1.96 1.34	0.22 .22 .22 .18 .20	4198 4192 4139 4041 3929	40.8 41.9 43.9 40.2 42.6	0.851 .850 .857 .862	51 50 30 29	3.124 3.150 5.489 3.067 3.017	58 39 40 41 42
793C 7756 7375 6636 7964	8325 7954 7995 8927	1.044 -997 .89C 1.119	20.4 19.9 17.1 17.0	142.9 135.5 116.5 145.5	7,371 7,357 8,569 5,308	.795 .769 .800	.037 .030 .051 .051	.913 .963 .939 .946	2.35 1.82 1.41	3.22 2.76 2.04 2.62	.20 .20 .20	4106 4052 5938 4183	41.1 43.5 41.8	.856 .851 .825	30 30 29 30	3.060 3.028 3.061 3.035	45 44 45 48 47
7765 7420 6721 5953	8704 8317 7534 6657	1.091 1.045 .946 .855	16.8 16.0 14.9 12.0	139.5 136.6 129.8 106.9	7.596 7.235 6.394 4.816	.735 .772 .830 .838	.035 .026 .025 .026	.924 .907 .938 .863	1.78 1.62 1.30 .90	2.46 2.21 1.60 1.23	.17 .17 .18 .16	4147 4098 5982 5793	40.9 40.3 40.3 39.6	.844 .843 .817 .824	30 30 29 26	3.108 3.085 3.059 3.962	48 49 50 51
<u></u>			100.				inhaust-nozzi		2.594 80			Lines					
7952 7780 7369 6585 5388 7924	9003 8796 8291 7373 5954 8971	1.129 1.105 1.040 .925 .747 1.125	22.4 22.7 22.0 16.9 11.1 17.1	151.0 163.5 147.1 151.0 77.0 145.6	8.321 7.986 7.242 6.118 3.090 7.842	-751 -768 -807 -867 -738 -719	.041 .038 .044 .045 .036	.902 .949 .939 .959 .562 .925	2.40 2.18 1.91 1.49 .67	5.18 5.08 2.70 1.95 .87 2.44	.23 .24 .25 .24 .18	4301 4259 4265 4138 3830 4276	40.7 41.9 42.1 40.4 39.8 41.3	.850 .845 .840 .837	32 32 31 31 28 32	3.293 3.293 3.291 3.265 3.820 3.319	52 53 54 55 55 57

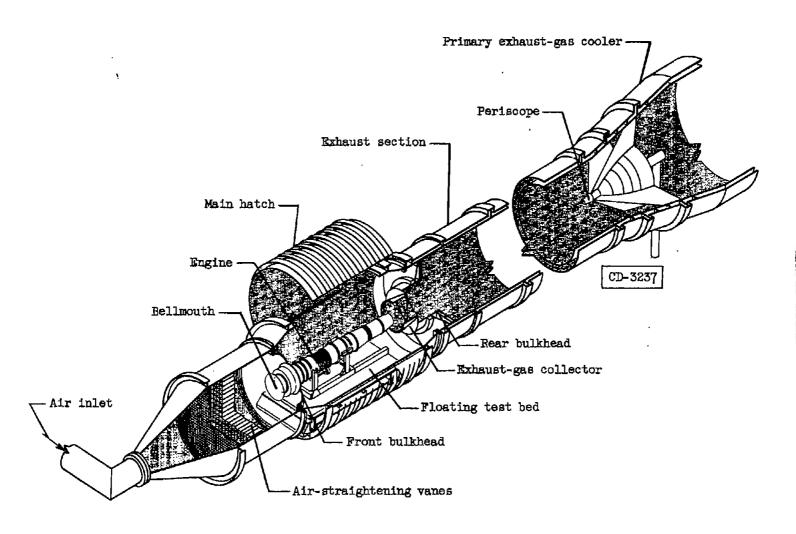


Figure 1. - Schematic diagram of altitude test chamber.

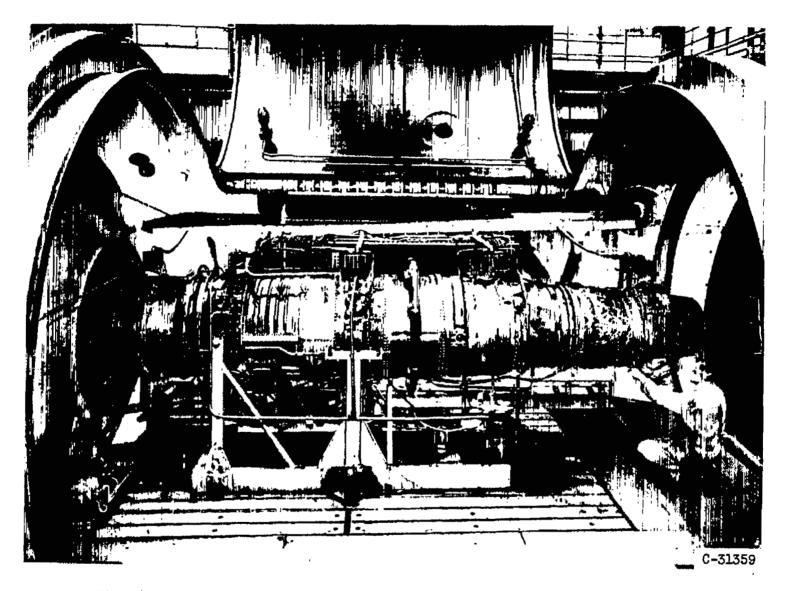


Figure 2. - Installation of YJ73-GE-3 turbojet engine in altitude test chamber.

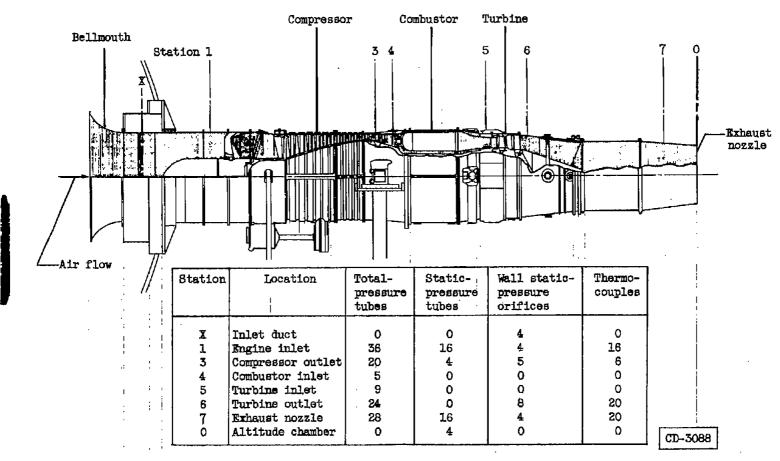
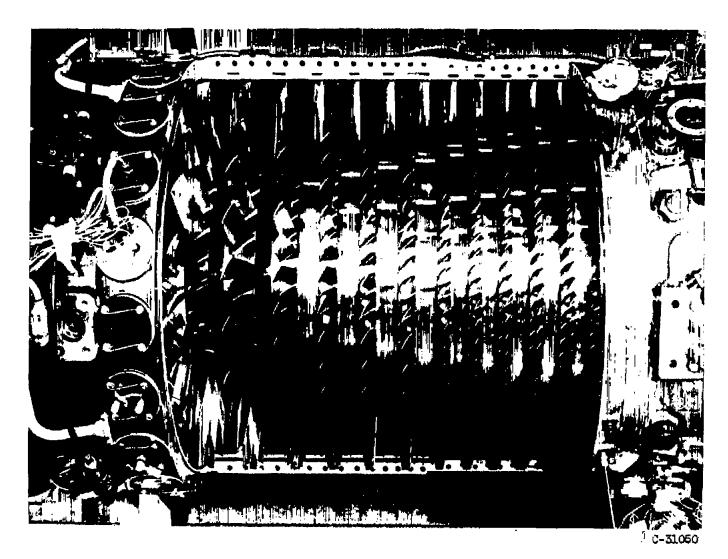
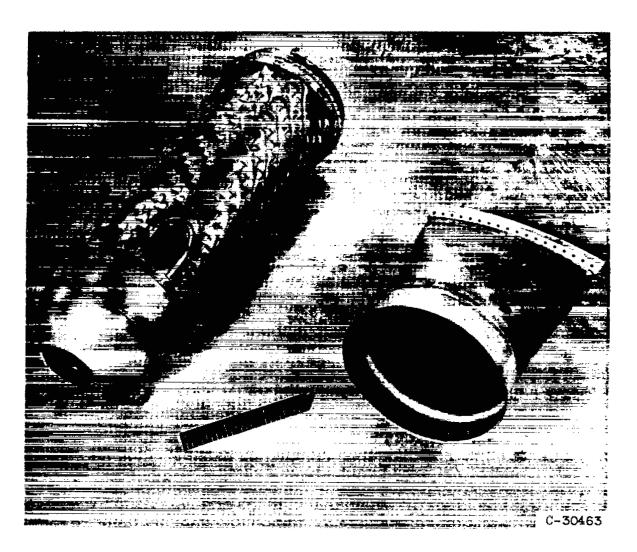




Figure 3. - Cross section of YJ73-CE-3 turbojet engine showing location of instrumentation.

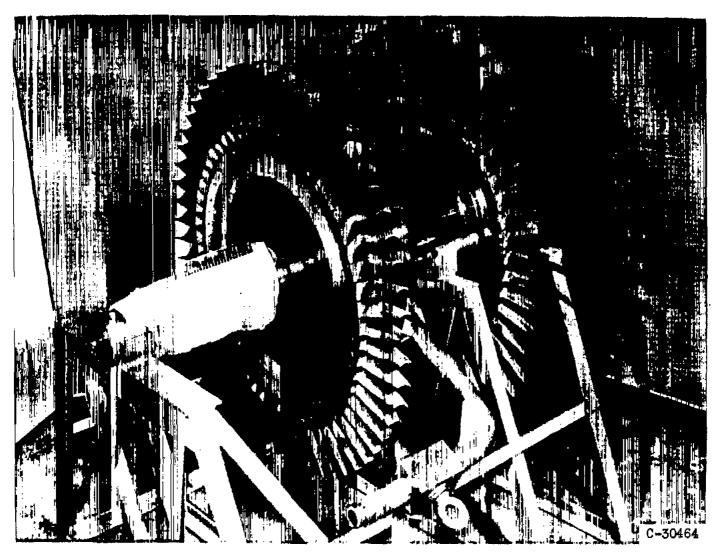

(a) Compressor rotor.

Figure 4. - Components of YJ73-GE-3 engine.

(b) Combustor liner and transition section.

Figure 4. - Continued. Components of YJ73-GE-3 engine.

(c) Turbine rotor.

Figure 4. - Concluded. Components of YJ73-GE-3 engine.

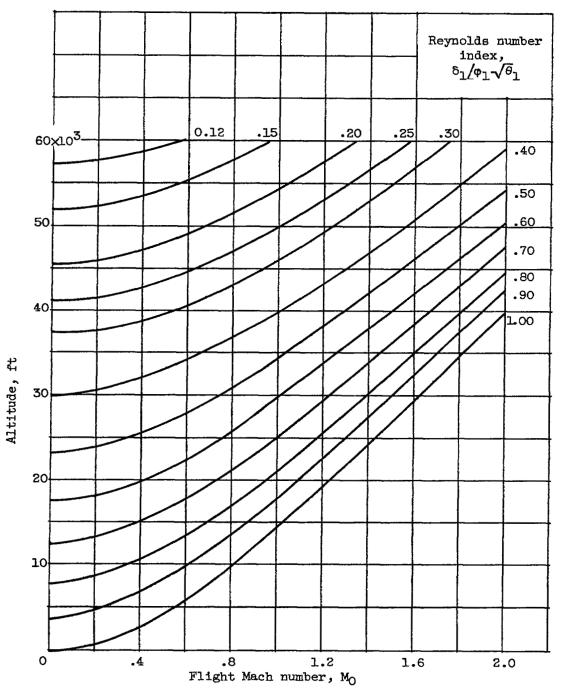
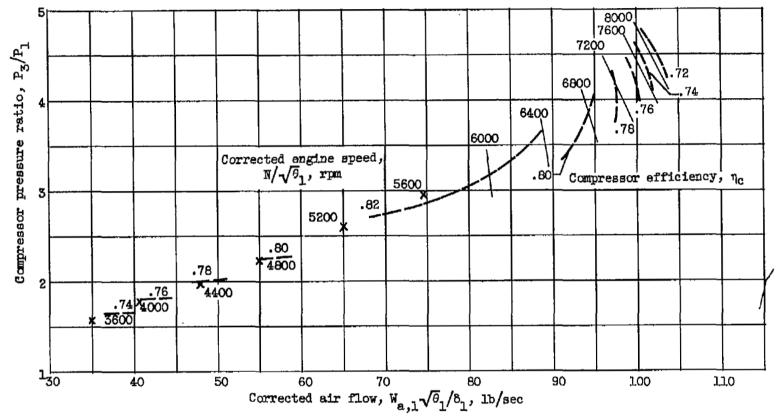
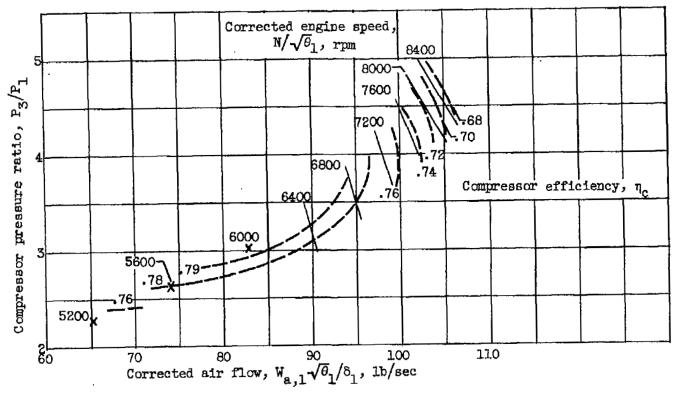




Figure 5. - Variation of Reynolds number index with altitude and flight Mach number at standard NACA conditions.

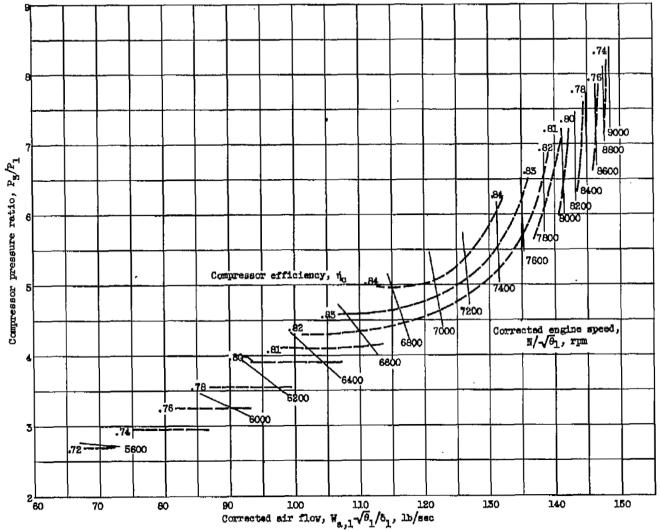

(a) Inlet guide vanes closed; Reynolds number index, 0.96.

Figure 6. - Compressor performance maps.

(b) Inlet guide vanes closed; Reynolds number index, 0.40.

Figure 6. - Continued. Compressor performance maps.

(c) Inlet guide vance open; Reynolds number index, 0.39.

Figure 6. - Concluded. Compressor performance maps.

40 NACA RM E54D09

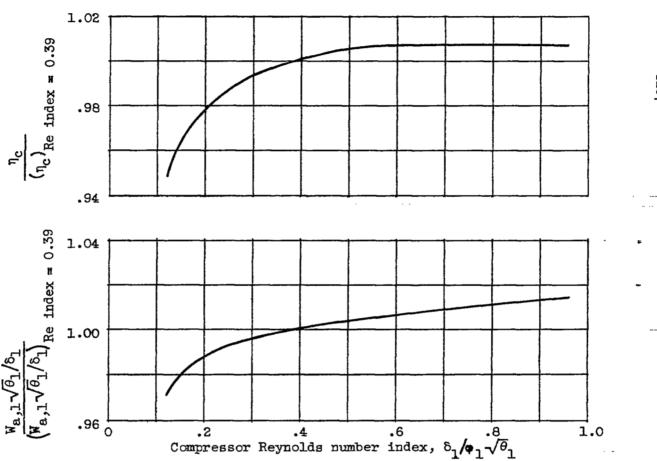


Figure 7. - Effect of compressor Reynolds number index on compressor efficiency and corrected air flow. Inlet guide vanes open. Applicable at all compressor pressure ratios at corrected engine speeds of 6800 rpm and above.

167

V-6

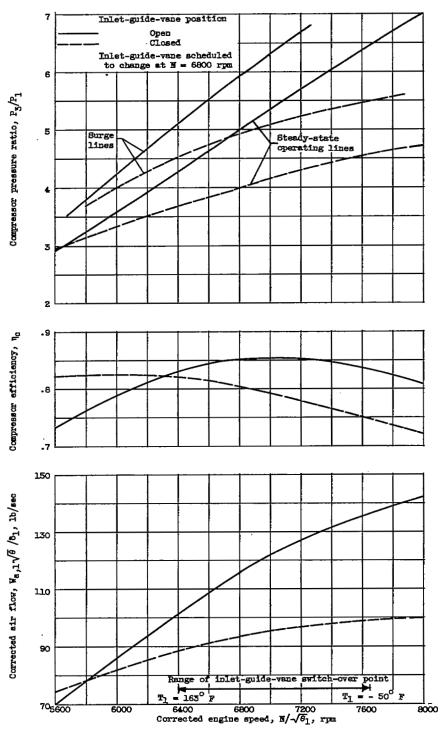


Figure 8. - Effect of inlet-guide-vane position on compressor pressure ratio, efficiency, and corrected air flow for rated exhaust-nozzle area. Reynolds number index, 0.96.

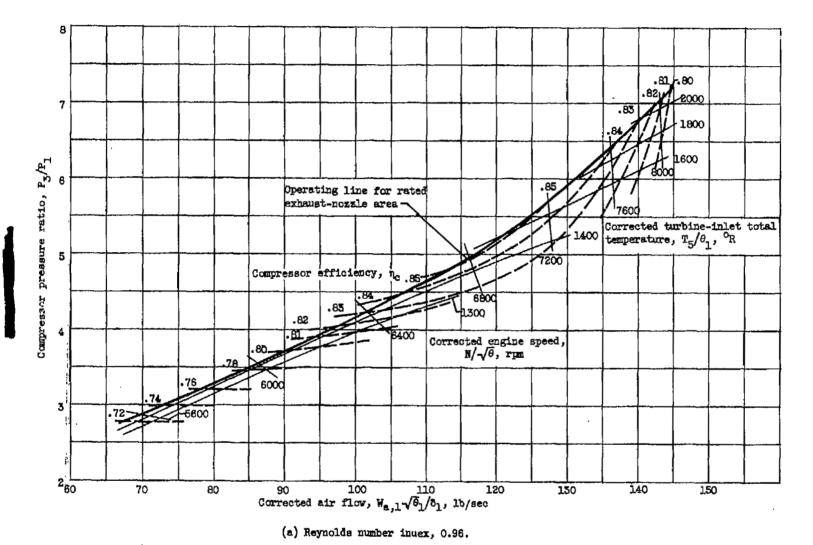
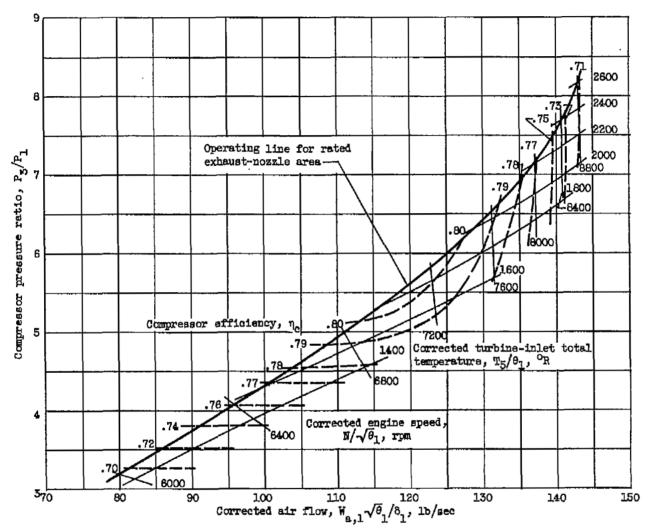
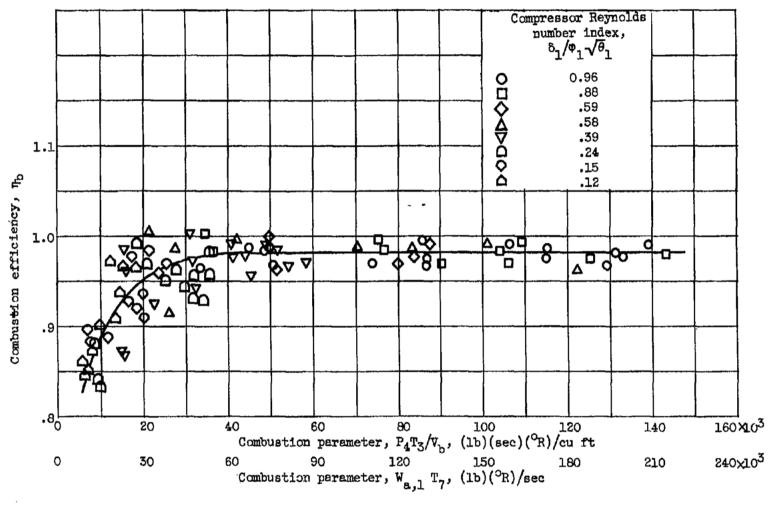



Figure 9. - Compressor performance map showing lines of constant corrected turbine-inlet temperature. Inlet guide vanes open.

(b) Reynolds number index, 0.12.

Figure 9. - Concluded. Compressor performance map showing lines of constant corrected turbine-inlet temperature. Inlet guide vanes open.



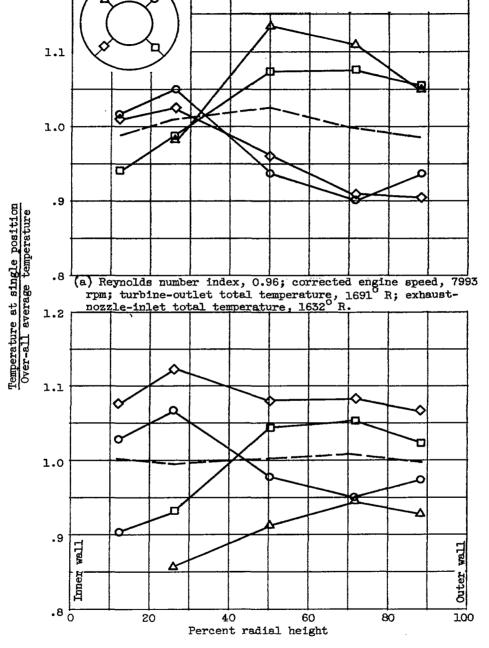

Figure 10. - Variation of combustion efficiency with combustion parameters.

Figure 11. - Variation of combustor total-pressure loss ratio with combustor temperature ratio.

1.2

Average radial distribution

(b) Reynolds number index, 0.12; corrected engine speed, 7514 rpm; turbine-outlet total temperature, 1637° R; exhaustnozzle-inlet total temperature, 1582° R.

Figure 12. - Typical total-temperature profiles at turbine outlet, station 6.

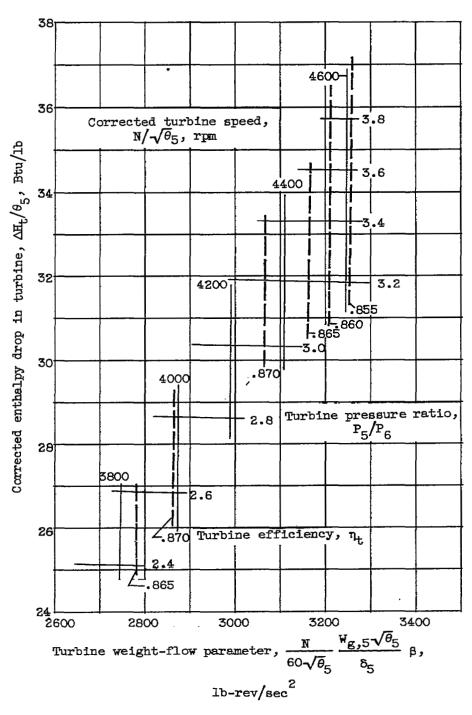


Figure 13. - Turbine performance map. Compressor Reynolds number indices of 0.96 and 0.88. Turbine Reynolds number indices varied as shown in table I.

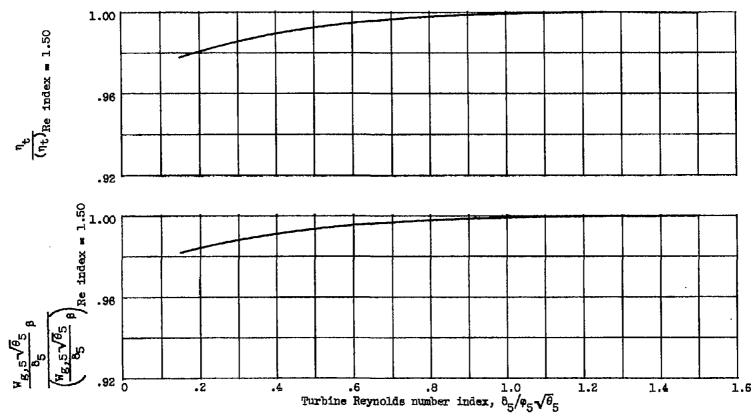


Figure 14. - Effect of turbine Reynolds number index on turbine efficiency and corrected turbine gas flow.

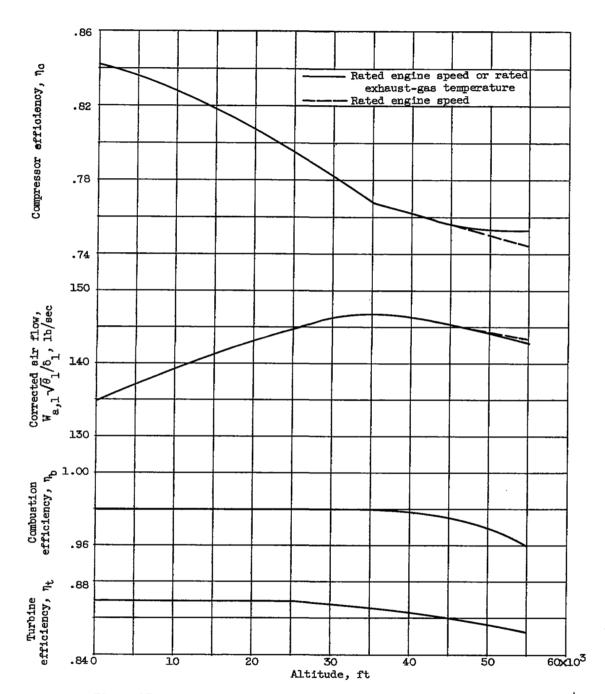


Figure 15. - Variation of compressor, combustor, and turbine efficiency and corrected air flow with altitude at rated engine conditions. Flight Mach number, 0.8.

ţ

. §

1